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Last time we we looking at the O(g2) contribution to the S matrix for
the scattering A + B → A + B in ABC theory, and we found

〈~p ′

A~p ′

B| Ŝ |~pA~pB〉 ≈ (−ig)2
∫

∞

0
d4y

∫

∞

−∞

d4x2 D(y, mC)

×
[

(

eip′A·y + e−ipA·y
)

ei(p′A−pA)·x2 + 2
√

EAE ′

A(2π)3δ3(p′A−pA) D(y, mA)
]

×
[

(

eip′
B
·y + e−ipB·y

)

ei(p′
B
−pB)·x2 + 2

√

EBE ′

B(2π)3δ3(p′B−pB) D(y, mB)
]

We argued that only the exponential pieces
from each square bracket contributed to
the scattering amplitude. These four terms
each correspond to one of the initial par-
ticles spitting off a C particle at x2, either
after having absorbed the other initial par-
ticle or going off as one of the final parti-
cles. The C particle continues to x1 and

A

B

C

B

A

[6.3 (d)]

either splits into the two final particles, or scatters off
the remaining initial particle. The first possibility in
each case corresponds to the diagram 6.3d, where A
and B join to form C, which then decays back into A′+
B′. The second possibility, where either A or B emits a
C and turns into B′ or A′ respectively, and then the C
is absorbed by the other incident particle, which turns
into the other outgoing particle, is shown in diagram
6.3e. Note this diagram includes the cases where either
A or B does the initial emitting, so we don’t know
which way to consider C is travelling between x2 and
x1,

A

B
A

B

C

[6.3 (e)]

The other terms in the expansion of S all contribute only to the multi-
plier of δ3(~p ′

A − ~pA)δ3(~p ′

B − ~pB), which means no scattering has taken place.
Nonetheless they present some new, interesting aspects of evaluation. Con-
sider first the contribution from the D(y, mB) in the B factor, with the ex-
ponential piece from the A factor. This contributes
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(−ig)2
√

EBE ′

B 2 (2π)6δ3(~p ′

A − ~pA)δ3(~p ′

B − ~pB)

×
∫

∞

0
dy0

∫

d3y
(

eip′
A
·y+e−ipA·y

)

D(y, mB)D(y, mC).

This piece is coming from the two fields interacting
only with the incoming and outgoing A particles, and
corresponds to diagram 6.3c.

A

B

A
B

B
C

[6.3 (c)]

As we have a delta function that sets p′A = pA, the last line can be written
∫

∞

−∞

d4y eipA·y
(

Θ(y0)D(y, mB)D(y, mC) + Θ(−y0)D(−y, mB)D(−y, mC)
)

but just as we did for the scattering part (Lecture 8 p 6), the parenthesis can
be written in terms of Feynman (time-ordered) propagators
DF (y, mB)DF (y, mC), which we defined last time:

DF (x1 − x2) := 〈0|T φ̂(x1)φ̂(x2) |0〉 .

The Feynman Propagator

We also defined its Fourier transform as D̃F (qµ) =
∫

d4xeiqµxµ

DF (xµ). We
will now show that this has an extremely simple expression.

From the integral for D(x1, x2), we see the time-ordered version is

DF (x1, x2) =
∫

d3k

(2π)32ωk

(

Θ(x0
1 − x0

2)e
−ikµ(x1−x2)µ

+ Θ(x0
2 − x0

1)e
+ikµ(x1−x2)µ

)

where k0 means ωk = +
√

~k 2 + m2. Taking the Fourier transform,

D̃F (q) =
∫

d4y eiqµyµ
∫

d3k

(2π)32ωk

(

Θ(y0)e−iωky0

Θ(−y0)e+iωky0
)

+ e+i~k·~y,

where I reversed the sign of the ~k integration variable in the second term.
The

∫

d3y gives (2π)3δ3(~q − ~k), so

D̃F (q) =
∫

∞

−∞

dy0

2ω~q

{

ei(q0−ω~q)y0

Θ(y0) + ei(q0+ω~q)y0

Θ(−y0)
}

.

The integral isn’t really well defined for real q0 because of the oscillatory
behavior as q0 → ±∞, but the first term is well defined for Im q0 > 0, for
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which the integral gives
1

2ω~q

i

q0 − ω~q

, and the second part is well defined for

Im q0 < 0, giving
1

2ω~q

−i

q0 + ω~q

. Throw in an infinitesimal piece to pretend

that real q0 has the required imaginary part, and we have

D̃F (q) =
1

2ω~q

(

i

q0 − ω~q + iǫ
− i

q0 + ω~q − iǫ

)

=
i

q2
0−~q 2−m2+iǫ

=
i

q2 − m2 + iǫ

where ǫ is an infinitesimal positive quantity.
This hocus-pocus with the ǫ could probably use a bit more explication.

If we undo the Fourier transform,

DF (x1, x2) =
∫

d4q

(2π)4
e−iqµ(x1−x2)µ

D̃F (q)

=
1

(2π)4

∫

d3~q ei~q·(~x1−~x2)
∫

dq0 e−iq0(t1−t2)

2ω~q

{

i

q0−ω~q+iǫ
− i

q0+ω~q−iǫ

}

The integral over real q0 along the contour Γ can
be evaluated by closing the contour with an in-
finite semicircle in the complex plane, providing
the contribution from that contour vanishes. If
t1 > t2, the exponential goes to zero for large neg-
ative Im q0, so we can close the contour with Γ+.
Then we just get −2πi times the residue of the
pole at +ω~q, so 2πe−iωvecq(t1−t2), and the full prop-
agator

q−ω

q+ω

Γ

0

Γ

+

−

q

Γ −  ε

+  εi

i

DF (x1 − x2) =
∫

d3q

(2π)3
e−iqµ(x1−x2)µ

∣

∣

∣

q0=ω~q

for t1 > t2.

On the other hand, if t1 < t2, the exponential vanishes for the large semicircle
in the upper half, so now the contour includes only the pole at −ω~q, goes in
the stardard counterclockwise direction, so we get 2πe+iω~q(t1−t2). Changing
the sign of the integration variable ~q, we have

DF (x1 − x2) =
∫

d3q

(2π)3
e−iqµ(x2−x1)µ

∣

∣

∣

q0=ω~q

for t2 > t1.

But we see that in both cases this is the time ordered propagator,

〈0|T φ̂(y)φ̂(0) |0〉 .
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Return to Fig. 6.3(c)

Let us return to the evaluation of the contribution to Ŝ given by Figure
6.3(c), or rather to the top piece, which is a transform of a product of two
Feynman propagators:

∫

∞

−∞

d4y eipA·yDF (y, mB)DF (y, mC)

=
1

(2π)8

∫

∞

−∞

d4y eipA·y
∫

∞

−∞

d4q e−iqµyµ

D̃F (q, mB)
∫

∞

−∞

d4k e−ikµyµ

D̃F (k, mC)

=
1

(2π)4

∫

∞

−∞

d4q
∫

∞

−∞

d4k δ4(pA − q − k) D̃F (q, mB)D̃F (k, mC)

=
1

(2π)4

∫

∞

−∞

d4q D̃F (q, mB)D̃F (pA − q, mC)

=
1

(2π)4

i

q2 − m2
B + iǫ

i

(pA − q)2 − m2
C + iǫ

.

At this point we note first, that unlike the scattering pieces, in which the
momentum of the propagator DF (q) was at definite momenta, either pA +pB

or p′A − pB, here we are left with an integral over the momentum q.
If we examine the expressions we found from contracting the φ̂ fields

and the creation and annihilation operators from the initial states, we see
that each factor of the hamiltonian density corresponds to a vertex, or point
where lines join, and each contraction corresponds either to an external line
connecting to another or to an internal vertex, or to a line which connects two
vertices. In momentum space, each vertex gives a factor of −ig, each internal

line gives a factor of
i

q2
j − mj + iǫ

, where qµ
j and mj are the momentum

and mass associated with the line, there is momentum conservation at every
vertex, and any internal line’s momentum not determined by momentum
conservation is to be integrated over,

∫

d4q/(2π)4. We will get to see that
this is general, although there may also be symmetry factors 1/S which we
will get to when we consider retrospectively and then more generally what
we did to get these expressions for the matrix elements Sfi. But first, lets
discuss the scattering cross section for colliding A and B beams.

At the end of lecture 8 we found that

〈~p ′

A~p ′

B| Ŝ |~pA~pB〉 ≈ −g2(2π)4δ (p′B−pB+p′A−pA)

×
[

D̃F (pA + pB, mC) + D̃F (p′A − pB, mC)
]

.
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which means the invariant amplitude is

iM = −g2
[

D̃F (pA + pB, mC) + D̃F (p′A − pB, mC)
]

= −ig2 1

(pA + pB)2 − m2
C

− ig2 1

(p′A − pB)2 − m2
C

.

Notice the first denominator is s − m2
C , where s is the square of the center

of mass energy, while the denominator of the second term is u − m2
c , where

u is the square of the 4-momentum transfer from the incoming B particle to
the outgoing A particle. At one time there was a lot of interest in scattering
with just two particles in the final state, and the lorentz-invariant part of
such scattering is well describe by Mandelstam variables s, t and u, where
t is (p′A − pA)2. Of course more generally the particles A′ and B′ can be
different types that the initial A and B, so which to call A′, and hence t
is the momentum transfer, is a matter of convention, which is, if possible,
to choose the outgoing particle most similar to A. If we call the outgoing
particles C and D, we have

s = (pA + pB)2 = m2
A + m2

B + 2pA µp
µ
B = (pC + pD)2 = m2

C + m2
D + 2pC µpµ

D

t = (pC − pA)2 = m2
A + m2

C − 2pA µp
µ
C = (pB − pD)2 = m2

B + m2
D − 2pB µp

µ
D

u = (pD − pA)2 = m2
A + m2

D − 2pA µp
µ
D = (pB − pC)2 = m2

B + m2
C − 2pB µp

µ
C

adding,

s + t + u = 3m2
A + m2

B + m2
C + m2

D + 2pA µ(pB − pC − pD)µ

= m2
A + m2

B + m2
C + m2

D,

because pB − pC − pD = −pA by momentum conservation. Thus for a fixed
set of particles, there are only two scalar parameters needed to describe the
kinematic factors in the invariant amplitude.

For the cross section, however, we need the noninvariant factor 4EAEB |~vA−
~vB| and to express the final momentum integrals in terms of scattering an-
gles. If we work in a frame where the initial particles move along a com-
mon line, say in the z direction, the non-invariant factor 4EAEB|~vA − ~vB| =
4(p3

Ap0
B−p3

Bp0
A) = 4ǫµν23p

µ
Apν

B, which shows it is Lorentz invariant for boost in
the z direction. So we can easily translate from the lab to the center-of-mass
frame.
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In the center of mass frame, p3
A = −p3

B = p, vA = p/EA so 4EAEB|~vA −
~vB| = 4pEcm and





n
∏

f=1

d3pf

(2π)3

1

2Ef



 (2π)4 δ4



kµ
A + kµ

B −
n
∑

j=1

pµ
j





→ p′ 2dp′ d cos θ dφ

16π2ECED

δ(EC + ED − Ecm)

As for the particle decay calculation, the delta function fixes p′ to be given by
6.65 with mC replaced by

√
s and mA and mB replaced by mC and mD, and

we can replace dp′δ(EC + ED − Ecm) by ECED/p′Ecm. Thus all together,

dσ

dΩ
=

1

4pEcm

p′

16π2Ecm
|M(s, u)|2 ,

where dΩ = sin θdθdφ as usual.
In our case, the particles in the initial state are the same as in the final

state, so in the center-of-mass p = p′, and we have

dσ

dΩ

∣

∣

∣

∣

∣

cm
=

1

64π2E2
cm

|M(s, u)|2 .

We also have t = (p′A−pA)2 = 2m2
A−2(E2

A−p2 cos θ) so u = 2m2
A+2m2

B−
s − t = 2m2

B − s + 2(E2
A − p2 cos θ). For simplicity, let’s assume mA = mB,

so E2
A = s/4, p2 = E2

A − m2
A = s

4
− m2

A, u = −2p2(1 + cos θ).?? In this case,

dσ

dΩ

∣

∣

∣

∣

∣

cm
=

g4

64π2s

(

1

s − m2
C

− 1

(s − 4m2
A) cos2(θ/2) + m2

C

)2

.

There are some comments in order here.

• Notice that the two Feynman diagrams give additive contributions to
the amplitude, and therefore there are interference terms in the cross
section.

• The smallest possible value of s is mA+mB, but if that is less than mC ,
our calculation gives an infinite cross section when s = mC . However,
when this is the case C is not a stable particle, and in some ways we
might consider that the mass has an imaginary part, and the amplitude
should be 1/(s−mC + iΓ/2, where Γ is the decay width we previously
calculated.
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• If type C particles are massless, the second term has a vanishing de-
nominator when the scattering angle θ = π, when the C propagator
has zero momentum, and the B′ particle comes off with the initial mo-
mentum of the A particle. This is similar to what happens with photon
exchange, except we don’t switch A and B there. This leads to a cross
section that blows up as sin4((π− θ)/2), reminiscent of the Rutherford
forward scattering cross section.

• If type C particles are not massless, but mC ≪ s, the second term will
still dominate, though not blow up. This will lead to a Yukawa type
potential (ignoring the A ↔ B switch) as explained in Chapter 1 (note
Eq. 1.16 looks like p2 − 1/a2 for a propagator).


