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1 Free Theory States, and Interactions

We have seen that the theory of a real scalar field

φ̂(xµ) =
∫

d3k

(2π)3
√

2ω

[

â(~k)e−ik·x + â†(~k)eik·x
]

. (1)

is now a quantum-mechanical operator, and the Hamiltonian,

Ĥ =
∫

d3k

(2π)3
ω~k â

†(~k) â(~k) (2)

is also, so we should ask what is the space upon which they act. Their action
is all through the operators â(~k) and a†(~k), which obey

[â(~k), â(~k ′)] = 0, [â(~k), â†(~k ′)] = (2π)3δ3(~k−~k ′), [â†(~k), â†(~k ′)] = 0. (3)

The clue is to consider the commutator of Ĥ with â(~k) and a†(~k),

[Ĥ, â(~p )] =
∫

d3k

(2π)3
ω~k [â†(~k) â(~k), â(~p )] =

∫

d3k

(2π)3
ω~k [â†(~k), â(~p )] â(~k)

= −
∫

d3k

(2π)3
ω~k (2π)3δ3(~k−~p ′) â(~k) = −ω~p â(~p ), (4)

[Ĥ, a†(~p )] = ω~p â
†(~p ). (5)

Equation (4) has an important consequence — given a state |ψ〉 with energy
E (that is, Ĥ |ψ〉 = E |ψ〉) there is another state |ψ′〉 = â(~p ) |ψ〉 with energy
E − ωp, because

Ĥ |ψ′〉 = Ĥâ(~p ) |ψ〉 = [Ĥ, â(~p )] |ψ〉 + â(~p )Ĥ |ψ〉
= −ωpâ(~p )] |ψ〉 + â(~p )E |ψ〉 = (E − ωp)â(~p )] |ψ〉 = (E − ωp) |ψ′〉 ,

unless, of course, â(~p ) |ψ〉 = 0. But as all ω’s are positive, in fact ω ≥ m > 0,
that means that if there is a state of lowest energy, a vacuum state we will
call |0〉, it must be annihilated by â(~p ) for all ~p.
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Starting with the state |0〉, which we will normalize so 〈0||0〉 = 1, we
can build up infinitely many states by applying products of â†(~p )’s for an
arbitrary collection of ~pj ,

|~p1 · · · ~pn〉 ∝
n
∏

j=1

â†(~pj) |0〉 , (6)

which will have E =
∑n

j=1 ωpj
if we claim the energy of |0〉 is zero.

From Emmy Noether we learn that if the action is invariant for any
continuous symmetry transformation, there is a conserved current and a
conserved “charge” associated with that transformation. Our Lagrangian
density L = 1

2
((∂µφ)2 −m2φ2) is a scalar under Lorentz transformations and

translations, so we must have conserved total momentum P̂ µ as well as an-
gular momenta L̂µν . Of course the “charge” associated with time translation

is the hamiltonian Ĥ. The corresponding things for spatial translation in-

variance are the spatial total momenta ~̂P (t) = − ∫ d3xπ̂(~x, t)~∇φ̂(~x, t). You
will not be surprized to find this gives1

~̂P =
∫

d3k

(2π)3
~k â†(~k) â(~k),

and that if a state |φ〉 is an eigenstate ~̂P |φ〉 = ~P |φ〉, that â†(~k) |φ〉 is an

eigenstate with momentum ~P +~k. Assuming, of course, that the vacuum has
~P = 0, we see that the state (6) has ~P =

∑n
j=1 ~pj, so it is very reasonable

to think of this state as a collection of n nointeracting particles, each with a
given momentum ~pj and (rest) mass m.

Notice that because the a† all commute with each other, the states |~p1 · · · ~pn〉
are independent of the order in which the ~pj occur. That is, the particles
obey Bose statistics, and any multiparticle wave function describing this state
would need to be totally symmetric under interchange of particles.

In our previous discussion where the fields were being treated as if they
were wave functions, the quantum-mechanical symmetry operators Λ̂, and
their generators, such as P̂ µ or L̂µν , were assumed to act on φ or ψ as states
|Ψ〉. But now that we are taking φ and ψ to be quantum fields, which are

operators themselves, we may also ask how these symmetry operators act
on fields. If a symmetry operator Λ̂ acts on all the states of the system,

1with a symmetry argument that
∫

d3k ~k = 0
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|Ψ〉 −→̂
Λ

|Ψ′〉 = Λ̂ |Ψ〉, and if Ô is another operator that actively maps each

state |Ψ〉 −→̂
O

|Φ〉 = Ô |Ψ〉 into another physical state, then

|Φ〉 −→̂
Λ

|Φ′〉 = Λ̂ Ô |Ψ〉 = Ô′ |Ψ′〉 , where Ô′ = Λ̂ Ô Λ̂−1.

Thus we see that in general, an operator is transformed by conjugating it with
the symmetry operator. If this finite symmetry operator is the exponential
of a generator, Λ̂ = e−iθL̂, then the way the generator acts on Ô is by
commutation, for

i
d

dθ
Ô′(θ)

∣

∣

∣

∣

∣

θ=0

= i
d

dθ

(

e−iθLÔeiθL
)∣

∣

∣

θ=0
=
[

L, Ô
]

.

We have already used this for the time-translation generator Ĥ in equations
(4) and (5).

2 Interactions

So far we have only quantized a theory with a lagrangian quadratic in the
fields, which have linear equations of motion and correspond to noninteract-
ing particles. But we saw from our discussion of electromagnetism interacting
with charge particles, that the equations of motion, while linear in φ or ψ if
we consider Aµ to be a fixed external field, are not really linear if we allow
that Aµ is also a dynamical field, and will be affected by the charged particle
fields φ or ψ. So the full theory, including the back reactions of the particles
on the electromagnetic field, is not exactly solvable.

The form of the lagrangian for this interacting theory, as for example
the charged scalar lagrangian from Homework 3, which includes terms like
−iqÂµφ̂†∂µφ̂, suggests that the general interaction we might wish to introduce
is easy to write down, just by including terms of order greater than quadratic
in the dynamical fields. We will find that all of the interactions we wish to
discuss (and we exclude general relativity as usual) are of this form, cubic
or quartic overall in the fields. It would be natural to therefore begin the
discussion of the Lagrangian for the Dirac spinor (which is bilinear in ψ

and ψ̄), adding electromagnetic interactions via minimal substitutions, which
would introduce a term proportional to Aµψ̄γµψ, overall cubic in the fields.
We will get to that, but the complications from the spinor nature of the Dirac
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field and the vector nature and gauge invariance of the electromagnetic fields
introduce considerable complications we would rather postpone until later.
So we will begin with a real scalar field. If we add a φ̂3(x) interaction to the
Klein-Gordon lagrangian

L̂(φ3)(x) =
1

2
(∂µφ̂(x))∂µφ̂(x) −m2φ̂2(x) − λφ̂3(x),

we see that the canonical momentum π̂(x) = ∂L̂

∂
ˆ̇
φ

=
ˆ̇
φ is unchanged by the

interaction, and the hamiltonian is therefore

H =
1

2

∫

d3x
[

π̂2 + (~∇φ̂)2 +m2φ2 + λφ̂3
]

.

If we consider classical states φ, states
which vary in time or space have higher
energy, due to the π2 = φ̇2 ≥ 0 and
(~∇φ)2 ≥ 0. States which are constant ev-
erywhere, φ(~x, t0 = φ0 have an energy per
unit volume V (φ0) = 1

2
(m2φ2

0 + λφ3
0).

This shows that the theory isn’t really
well defined. Classically we would have
states of arbitrarily negative energy by tak-
ing φ = const → −∞. This could be
fixed by adding a term −λ4φ̂

4(x) to the
lagrangian, or substituting this for the φ̂3

m2 2 3 3λ

φ

φφ +

term, but that would complicate the discussion. In any case, the theory
with terms higher than quadratic is not exactly solvable, and we will pursue
results by using perturbation theory, assuming the λ coefficient is small and
the non-quadratic terms can be treated order by order in perturbation theory.
As such, we will not meet the problem of the hamiltonian being unbounded
from below, though we will consider a similar situation later when we get to
spontaneous symmetry breaking.

So we will divide our full hamiltonian into a free hamiltonian Ĥ0 =
ĤKG which is the λ → 0 part, and an interaction hamiltonian Ĥ ′(t) =
λ
∫

d3xφ̂3(~x, t).
Recall in nonrelativistic quantum mechanics, there are two ways to view

how things evolve. In the Schrödinger picture, we have fixed operators like
x̂ and p̂, which are not considered to be functions of time, but which act
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on a wave function ψ(t) which is time dependent, with ih̄ d
dt
ψ(t) = Ĥψ(t).

The wave function at any time can be formally related to that at t = 0 by
ψ(t) = e−iĤt/h̄ψ(0). The expectation value of any time-independent operator
Ô at time t is given by

〈ψ(t)| ÔSch |ψ(t)〉 = 〈ψ(0)| eiĤt/h̄ ÔSch e
−iĤt/h̄ |ψ(0)〉

and so could be just as well represented by considering the state ψ = ψ(0) to

be static, but considering the operators ÔH(t) = êiĤt/h̄ÔSche
−iĤt/h̄ to evolve

with time. This is the Heisenberg picture.
In our discussion of the field φ(~x, t) we had it evolving with time. Before

quantizing we could not distinguish whether it was a Schrödinger wave func-
tion or a Heisenberg operator, but now that we have quantized it, we see that
φ̂(~x, t) was the Heisenberg operator for our noninteracting field theory. The
time dependence we assigned it was consistent with the Heisenberg equation
of motion,

d

dt
ÔH =

i

h̄
[Ĥ, ÔH]

where there is no explicit dependence of ÔSch on t. But that was only for the
noninteracting hamiltonian, and as we don’t know how to solve the nonlinear
equations of motion for φ̂H with the full hamiltonian, the φ̂(~x, t) of equation
(1) is in neither the Schrödinger nor the Heisenberg picture of the full the-
ory. Instead, we consider an intermediate formulation called the interaction

picture.
Let’s go back to setting h̄ = 1.
So an interaction picture for a quantum system begins by dividing the

full hamiltonian into a non-interacting piece Ĥ0 and an interaction term
Ĥ ′, assuming we know how to find the time evolution of states under Ĥ0,
and that it has no explicit time dependence. Starting with the Schrödinger
picture states |ψ(t)〉, define interaction-picture states |ψ(t)〉I = eiĤ0t |ψ(t)〉.
If we ask how this state evolves under the influence of the full hamiltonian,
we have

i
d

dt
|ψ(t)〉I =

(

i
d

dt
eiĤ0t

)

|ψ(t)〉 + eiĤ0t

(

i
d

dt
|ψ(t)〉

)

= eiĤ0t

(

−Ĥ0 |ψ(t)〉 + i
d

dt
|ψ(t)〉

)

= eiĤ0t
(

−Ĥ0 |ψ(t)〉 + (Ĥ0 + Ĥ ′) |ψ(t)〉
)
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= eiĤ0tĤ ′ |ψ(t)〉 = eiĤ0tĤ ′e−iĤ0t |ψ(t)〉I ,

so

i
d

dt
|ψ(t)〉I = Ĥ ′

I |ψ(t)〉I with Ĥ ′
I := eiĤ0tĤ ′e−iĤ0t, (7)

the interaction hamiltonian in the interaction picture. Notice that we started
with the constant Schrödinger picture Ĥ ′ and transformed it only with the
noninteracting hamiltonian, so all the operators involved in the expression for
Ĥ ′ (for example −λφ̂3) are in fact interaction-picture operators with known
time dependence.

Read pages 156-158, §6.2.2 of Aitchison and Hey,
(4’th Ed.) [147-149 in 3rd Ed.?].

I will not rewrite this, as it is fine as is, except to point out

• The time-ordering symbol T is sort of a metaoperator, not an operator,
because it acts on the written expression, not on the states present in
the expression where it acts.

• But allowing for such metamathematics, equation 6.42 is more elegantly
written as

Ŝ = T exp
{

−i
∫

d4x ĤI(x)
}

.


