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1 P, C and T

We have discussed how ψ transforms under proper1 isochronous2 Lorentz
transformations3. Now we turn our attention to three discrete transforma-
tions which might be symmetries: parity, time-reversal, and charge conjuga-
tion.

The transformation ~x → ~x ′ = −~x, t → t′ = t is called parity. It satis-
fies the general Lorentz transformation constraint but has determinant −1,
so is not proper, though it is isochronous. Various classical physical prop-
erties have fixed behavior under parity, which is to say that we can de-
fine transformations of these quantities so as to maximize the possibility
that our physics is invariant under parity. Three-dimensional scalars such
as mass, charge, time and charge density are unchanged (though for fields,

the argument changes). Polar vectors such as ~x, velocity, ~p, ~E, force and
acceleration change sign under parity, while pseudovectors such as angular
momentum, spin ~S and magnetic field ~B do not. A quantity like helicity,
h = ~p · ~S which is invariant under rotations but changes sign under parity
is called a pseudoscalar. Cross products reverse sign under parity, which is
why ~F = q( ~E + ~v × ~B) requires that ~E is a vector but ~B is a pseudovector.

Pseudoscalars behave as scalars, and pseudovectors as vectors, under ro-
tations.

We expect a field which behaves as a scalar under rotations to transform
φ→ φ′ with φ′(~x ′) = ±φ(~x) under parity. The phase is ±1 because applying
parity twice is the identity transformation and should leave φ unchanged.
The field is scalar or pseudoscalar if the ± is +1 or −1 respectively. But a

1Taking the determinant of gµν = Λρ
µΛσ

νgρσ (Homework 1 Problem 2a) we see that
detΛ·

· = ±1. Those with determinant +1 are called proper
2From the same equation, g00 = 1 = Λρ

0
Λσ

0
gρσ = (Λ0

0
)2−∑k(Λk

0
)2 we see (Λ0

0
)2 ≥ 1.

Those with Λ0

0
≥ 1 are called isochronous, as they preserve the direction of time for

timelike paths, while those with Λ0

0
≤ −1 reverse the direction of time.

3Any Lorentz transformation reachable by continuous rotation and/or acceleration from
the identity Λµ

ν = δµ
ν must have its determinant and its Λ0

0
matrix element vary contin-

uously, and therefore cannot jump the gap between +1 and −1, so this connected set of
Lorentz transformations are the proper isochronous ones.
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field with non-zero spin, which has more than one component, might have
the components transform into each other. Let us consider a Dirac spinor,
and see if we can define ψ′

a(~x
′) = Mabψb(~x) so that if ψ(~x) satisfies the Dirac

equation (iγµ∂µ −m)ψ(x) = 0, the transformed one will also. So if we apply
the Dirac operator, will it vanish?

0
?
=

(

iγµ ∂

∂x′µ
−m

)

ψ′(x′) =

(

iγµ ∂x
ν

∂x′µ
∂ν −m

)

Mψ(x).

The ∂xν/ ∂x′µ is zero unless µ = ν, and is +1 if they are zero but −1 if they
are spatial (1,2,3). So if the matrix M satifies [γ0,M ] = 0 = {γk,M}, so that
pulling M to the left through the γµ changes the signs of the spatial compo-
nents but not the time component, we are left with M (iγµ∂µ −m)ψ(x) = 0,
and our tranformed ψ′ satisfies the same physics. Note M = γ0 does exactly
that, so we define ψ′(x′) = γ0ψ(x).

We could have just as well introduced a phase ηP into M . Applying parity
twice is the identity acting on xµ, so it is convient to think P 2ψ = ψ, and we
should have4 ηP = ±1. We will choose +1.

Note if we had included an interaction with the electromagnetic field, the
same sign change for ∂µ → ∂′µ also applies to Aµ → A′

µ, as A0 is unchanged

but ~A ′(x′) = − ~Ak(x), so ~A must be a polar vector, consistent with ~B =
~∇× ~A.

How do ψ†, ψ̄ = ψ†γ0, and bilinears like T µ1···µn = ψ̄
(

∏n
j=1 γ

µj

)

ψ trans-

form? By taking the hermitean conjugate of ψ′(x′) = γ0ψ(x) we have
ψ′ †(x′) = ψ†(x)γ0 as γ0 is hermitean, and ψ̄′(x′) = ψ̄(x)γ0. For a bilin-
ear

ψ̄′(x′)





n
∏

j=1

γµj



ψ′(x′) = ψ̄(x)





n
∏

j=1

[

γ0γµjγ0
]



ψ(x) = ±ψ̄(x)





n
∏

j=1

γµj



ψ(x),

with a minus sign if there are an odd number of spatial indices µj and a plus
sign otherwise. In other words, T µ1···µn transforms as one would expect for a
tensor.

Can we not have a pseudotensor? If we define a new gamma matrix

γ5 := iγ0γ1γ2γ3

4This is not quite convincing, because ψ is not an observable, and we could say only
bilinears like ψ†(

∏

j γ
µj )ψ need to return to the same value under P 2.
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we see that γ5 anticommutes with each of the γµ, and therefore it commutes
with the [γα, γβ] which generate proper isochronous Lorentz transformations.
Thus inserting a γ5 in a bilinear will not change its transformation properties
under these connected Lorentz transformations, but it does introduce an
odd number of spatial index γµ’s, so it reverses the behavior under parity,
converting T into a pseudotensor.

In particular, ψ̄ψ is a scalar and iψ̄γ5ψ is a pseudoscalar, ψ̄γµψ is a vector
and ψ̄γµγ5ψ is an axial or pseudo vector.

How does parity act on our positive energy state u(~p, s) and our negative
energy state v(~p, s)? We expect to get states with ~p ′ = −~p and s unchanged.

Using our Dirac representation, for which γ0 =
(

1I 0
0 −1I

)

,

Pu(~p, s) = P
√
E +m

(

φs

~σ·~p

E+m
φs

)

=
√
E +mγ0

(

φs

~σ·~p

E+m
φs

)

=
√
E +m

(

φs

− ~σ·~p
E+m

φs

)

=
√
E +m

(

φs

~σ·~p ′

E+m
φs

)

= u(~p ′, s),

but

Pv(~p, s) = P
√
E +m

( ~σ·~p
E+m

χs

χs

)

=
√
E +mγ0

( ~σ·~p
E+m

χs

χs

)

=
√
E +m

( ~σ·~p
E+m

χs

−χs

)

=
√
E +m

(− ~σ·~p ′

E+m
χs

−χs

)

= −v(~p ′, s),

Note the negative energy solution has the opposite parity from the positive
energy one.

1.1 Scalar particles

I skipped over scalar particles and the Klein-Gordon equation when dis-
cussing interaction with the electromagnetic fields via minimal substitution.
Let’s consider it now.

Using the covariant derivative Dµ := ∂µ + iqAµ in place of the ordinary
derivative in the Klein-Gordon equation, we have

0 =
(

DµD
µ +m2

)

φ =
(

+ iq(∂µA
µ) + 2iqAµ∂µ − q2AµA

µ +m2
)

φ.

We note that under parity, the scalar potential A0 should be unchanged
and the vector potential should be a polar vector so that ~B = ~∇ × ~A is a
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pseudovector. Thus A0 doesn’t change sign while ~A does, which is the same
as for the partial derivative, so the interaction terms are invariant under
parity.

In the Schrödinger equation, the probability density ψ∗ψ is conserved
with a probability current ~j = −ih̄

2m

(

ψ∗~∇ψ − (~∇ψ∗)ψ
)

. For the relativistic
Klein-Gordon equation, this leads to the conserved probability current of the
free scalar, jµ = iφ∗∂µφ − i (∂µφ∗)φ. Note this is real, and it is conserved,
∂µj

µ = i∂µφ
∗∂µφ+ iφ∗∂2φ− i (∂2φ∗)φ− i∂µφ

∗∂µφ = −m2φ∗φ+m2φ∗φ = 0).
Now if φ(~x, t) is a solution of the Klein-Gordon equation, so is φ∗(~x, t), but
we see that interchanging φ ↔ φ∗ changes the sign of the current and the
density j0. So j cannot be the probability current. If we multiply it by q, and
call this the charge of the particle, we can consider it to be the electric charge
and current densities. We see that interchanging φ and φ∗ is equivalent to
changing the sign of q. If we also do minimal substitution, we get

jµ(φ,Aµ) = iqφ∗Dµφ− iq (Dµφ∗)φ = jµ(φ, 0) − 2q2φ∗φAµ. (1)

Now interchanging φ and φ∗ and also changing the sign of Aµ, without chang-
ing the parameter q, changes the sign of the current consistently. This is
called charge conjugation. If φ is a positive energy state, we see that the
negative energy φ∗ corresponds to a particle of opposite charge.

From Dirac and those who reinterpreted holes in the negative energy sea
as antiparticles, we see that these states with the electron’s charge −e and
momentum pµ (with p0 < 0) should be reinterpreted as antiparticles with
a positron’s charge +e and momentum −pµ (and therefore with positive
energy). This means not only the energy but also the momentum is reversed,
so the wave function eiEt−~p·~x is complex conjugated. So we can define our
charge-conjugated solution φC(~x, t) = ηCφ

∗(~x, t) Our Klein-Gordon equation
with interactions will be invariant if we also say that Aµ changes sign under
charge conjugation, Aµ

C(~x, t) = −Aµ(~x, t).
If we have a solution ψ of the Dirac equation 0 = (iγµ∂µ − qγµAµ −m)ψ

with charge q in an external field Aµ, can we find a charge-conjugated Dirac
field ψC(~x, t) which satisfies the Dirac equation with charge −q? We suspect
something like ψC(~x, t) = Mψ∗(~x, t) should work. We would like

0 = [iγµ∂µ − (−q)γµAµ −m]ψC(~x, t).

If we take the complex conjugate, we can ask if

0 =? (−iγµ ∗∂µ + qγµ ∗Aµ −m)ψ∗
C(~x, t)

= (−iγµ ∗∂µ + qγµ ∗Aµ −m)M∗ψ(~x, t).
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Note that, in our representation, all the γ matrices are real except γ2, which
is pure imaginary, so −γµ ∗γ2 = γ2γµ, so if M∗ = iγ2 = M , we have

M (iγµ∂µ − qγµAµ −m)ψ(~x, t) = 0,

and ψC obeys the −q Dirac equation, even with E&M interactions.
If we look at the transform of the A = 0 positive energy solution u, we

get

uC(~p, s) =
√
E +miγ2

(

φs∗

~σ∗ · ~p φs∗/(E +m)

)

=
√
E +m

(

0 iσ2

−iσ2 0

)(

φs∗

~σ∗ · ~p φs∗/(E +m)

)

=
√
E +m

(

~σ · ~p (−iσ2φ
s∗)/(E +m)

−iσ2φ
s∗

)

=
√
E +m

(

~σ · ~pχs/(E +m)
χs

)

= v(~p, s)

with χs = −iσ2φ
s∗.

Similarly, the charge conjugate of v(~p, s) is u(~p, s).
In the Dirac picture, with negative energy states identified as the absence

of particles going backwards in time as antiparticles, it is a bit hard to dis-
tinguish charge conjugation from time reversal. Classically, however time
reversal changes the sign of ~v, ~p, and ~j, but not accelerations or forces, and
thus not ~E, but it does change the sign of ~B, partly because it is generated
by currents. So A0 → +A0 but ~A→ ~A. Going backwards in time we expect
ψT (~x, t′) is related to ψ(~x,−t) with the opposite momentum. This requires
the complex conjugate, so we expect ψT (~x, t′) = UTψ

∗(t) The Dirac equation
requires

0 =
(

iγµ∂′µ − qγµA′
µ −m

)

ψT (t′)

has a complex conjugate
(

−iγµ∗∂′µ − qγµ∗A′
µ −m

)

U∗
Tψ(t) = 0.

As the complex conjugate on the γ’s gives a minus sign for µ = 2 only, and
as the partial derivative gives one for µ = 0, the first term changed sign for
µ = 1 and 3. As Aµ changes sign for spatial µ, the same is true for the
second term. So if U∗

T anticommutes with γ1 and γ3 and commutes with the
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others, we have U∗
T (iγµ∂µ − qγµAµ −m)ψ(t) which is indeed zero. So we

take UT = −iγ1γ3 =
(

σ2 0
0 σ2

)

.

We will discuss P, C, and T again after we reformulate our thinking
along the lines of quantum field theory, where antiparticles will be on the
same footing as particles and the confusion between C and T is cleared up.

Just a few words about applications now, however. As we have already
seen, parity conservation in π0 → γ + γ decay requires the pion to have
negative intrinsic partity, and this effects the parity of 3 pion final states, as
we discussed in τ decay. That the τ → 3π and the θ → 2π are the same
particle showed that parity is not conserved by the weak interactions which
enable these decays, but parity is conserved by the strong and electromag-
netic interactions. The strong and electromagnetic interactions also conserve
charge conjugation and time reversal invariance, but again the weak inter-
actions do not. The weak interactions seem to violate P to the maximum
extent possible, coupling only to left handed helicity states and not right
handed states. They do come close to symmetry under the combined CP ,
violating it 1/1000 times as strongly as they violate P , so that this violation
has been seen experimentally only in the very small mixing of the K0 with
its antiparticle and of the B0 = (db̄) with its antiparticle, producing even
and odd combinations with very slightly different masses.

As we shall see when we repeat this discussion more carefully in the
context of quantum field theory, any Lorentz invariant QFT with local fields
and a Hermitean hamiltonian and obeying the spin-statistics theorem must
preserve the combined PCT symmetry.


