Physics 613Homework #9Due April 14, 2014 at 4:00 EST

- 1: Consider the quantum field theory of a complex spinor ψ with mass m coupled to a neutral scalar field ϕ of mass μ , with a scalar-spinor interaction $-q\bar{\psi}\psi\phi$ and a scalar self-interaction $-\frac{\lambda}{4!}\phi^4$
 - 1. Is this a renormalizable theory? Which products of fields might require regularization? How divergent is each expected to be?
 - 2. Write out the lowest order correction to the scalar propagator due to intermediate spinors. Do we have divergent $\delta \mu^2$ and divergent field strength Z_{μ} with $\phi = Z_{\mu}^{-1/2} \phi_0$? Give the expression for $\Pi_{\mu}^{[2]}$, without worrying about regularization.
 - 3. Write out the lowest order correction to the spinor propagator due to an intermediate spinor-scalar state. Do we have divergent δm and divergent field strength $Z_{2,\psi}$ with $\psi = Z_{2,\psi}^{-1/2} \psi_0$? Let $\Sigma^{[2]}(p)$ be the analog of $\Pi^{[2]}_{\mu}$ for the spinor. Note that it is a matrix in spinor space. Give an expression for it, again without worrying about regularization.