Physics 613Spring, 2014Homework #4.Due Feb. 24 at 4:00

- 1: In non-relativistic physics, we normalize our states in terms of the integration over d^3x , or in momentum space, we have $\int d^3k \left| \vec{k} \right\rangle \left\langle \vec{k} \right| = 1$. But d^3k is not a Lorentz invariant integration measure. Show
 - (a) d^4k is an invariant measure for proper Lorentz transformations. That is, if $k'^{\mu} = \Lambda^{\mu}{}_{\nu}k^{\nu}$ for a proper Lorentz transform Λ , $dk'^0 dk'^1 dk'^2 dk'^3 = dk^0 dk^1 dk^2 dk^3$.
 - (b) As $\delta(k^2 m^2)$ is Lorentz invariant, that means $\int d^4k \, \delta(k^2 m^2)$ is Lorentz invariant. With $m^2 \ge 0$, when $\delta(k^2 m^2)$ is coupled with $\Theta(k^0)$, the combination is also invariant under isochronous Lorentz transformations. Thus we have $d^4k\Theta(k^0)\delta(k^2 m^2)$ is invariant under proper isochronous Lorentz transformations. Show this means

$$\int \frac{d^3k}{(2\pi)^3 2\omega_k} \quad \text{is invariant}$$

for proper isochronous Lorentz transformations.

2: Evaluate for a free real scalar field the vacuum matrix element

$$\langle 0 | \phi(\vec{x}', t') \phi(\vec{x}, t) | 0 \rangle$$

You should reduce this to a single interval, and for spacelike separation, find the explicit answer in terms of the modified Bessel function $K_1\left(m\sqrt{-(\Delta x)^2}\right)$ Hint: Your answer should be invariant under space-time translation, thus a function only of $\vec{x}' - \vec{x}$ and t' - t, and it should be invariant under proper isochronous Lorentz transformations. You should be able to extend the |k|integral to the whole real axis, and distort the contour around the cut. Then it may help to know

$$\int_{1}^{\infty} dv \, \frac{v}{\sqrt{v^2 - 1}} \, e^{-bv} = K_1(b).$$

¹The Heaviside step function $\Theta(x) = 1$ for x > 0 and = 0 for x < 0. If necessary $\Theta(0) = 1/2$, but we never really need that.