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ε in higher dimension Euclidean and
Minkowski spaces

Copyright c©2005 by Joel A. Shapiro

The antisymmetric tensor εijk defined in three dimensions can be extended
to higher dimension D, though only with D indices. To allow for Minkowski
as well as Euclidean space, we will distinguish between upper and lower
indices, related by the Minkowski metric tensor gµν , which we will take to
have only diagonal elements equal to ±11.

We define εµ1µ2...µD to be the totally antisymmetric (under interchange of
pairs of indices) tensor with ε0 1 ... D−1 = 1. As the tensor is zero if any two
indices are the same, and as there are the same number of indices as there
are possible values, the only nonzero values of ε are when the indices are a
permutation P of the D possible index values, which we take here to run
from 0 to D−1 (as ordinary Minkowski space will be our usual application).
When the indices are a permuation P of these values, the value of ε is just
the “sign of the permutation P”, written (−1)P .

Thus we can write

εµ1µ2...µD =
∑

P∈SD

(−1)P
D−1∏
j=0

δ
µj

Pj, (1)

where SD is the set of permutations on D objects, here labelled 0, . . . , D−1,
and Pj is the object P maps object j into. Then we get a basic identity

εµ1µ2...µDεν1ν2...νD =
∑

P∈SD

(−1)P
D−1∏
j=0

δ
νj
µPj

. (2)

To see that this is true, note that if any two of the µ’s or any two of the ν’s are
equal, both sides are zero because interchanging the two delta functions with
the equal values does not change the product but is equivalent to changing
the permutation by a transposition, which reverses (−1)P . If the µ’s are
Pµ(0, 1, . . . , D−1) and the ν’s are Pν(0, 1, . . . , D−1), then the left hand side
is (−1)Pµ(−1)Pν , while the only permutation P which gives a contribution
on the right hand side is P = PνP

−1
µ , with (−1)P = (−1)Pµ(−1)Pν .

1Usually for Minkowski space there will be one time with g00 = 1 and D − 1 space
dimensions with gij = −δij . For Euclidean space we take all diagonal elements to be +1,
so g is the unit matrix and there is no distinction between upper and lower indices.
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Note that expression 2 doesn’t look right, because on the left side we
have µj as a contravariant (upper) index, while on the left it is a covariant
(lower) index. We can make a covariant statement by lowering all the indices,
which introduces the product of all the diagonal elements of gµρ, which is its
determinant det(g). Thus

εµ0µ1...µD−1
εν0ν1...νD−1 = det(g)

∑
P∈SD

(−1)P
D−1∏
j=0

δ
νj
µPj

(3)

Two alternate expressions for the same product of ε’s are

εµ0µ1...µD−1
εν0ν1...νD−1 = det(g)

∑
P∈SD

(−1)P
D−1∏
j=0

δ
νPj
µj

(4)

= det(g)
∑

P∈SD

(−1)P
D−1∏
j=0

δ
νj

Pµj
. (5)

In the second form we permute the values of the indices ν rather than
µ. As a permutation of the delta functions factors in the product makes no
difference, for any permutation P’

D−1∏
j=0

δ
νj
µPj

=
D−1∏
j=0

δ
νP ′j
µPP ′j .

For each P in the sum in (3) we can choose P ′ = P−1 to convert it to (4)
(renaming the dummy summation P → P−1). In the third form we permute
the values of the indices µ rather than their indices j. Unless all the µj are
different the rhs of both (3) and (5) will vanish, and if they are all different,
there is a permutation P ′ with µj = P ′j for all j. Then the lower indices in
(3) are P ′Paj and those of (5) are PbP

′j, where I have renamed the dummy
summation variables to distinguish them. In either case only one permutation
will give a nonzero contribution, with P ′Pa = PbP

′, or Pb = P ′Pa(P
′)−1. As

(−1)Pb = (−1)P
′Pa(P

′)−1
,

we have verified that (5) is equal to (3).

[A flash forward to curved space: In Riemann space the metric tensor gµν

is no longer diagonal nor are its non-zero elements restricted to ±1. The
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contravariant tensor is then defined2 as εµ1µ2...µD = (| det(g)|)−1/2εµ1µ2...µD ,
and the covariant one is εµ1µ2...µD

= sign(det(g))(| det(g)|)1/2εµ1µ2...µD .]

The basic identity (5) is seldom used in its full form, but often used with
some indices contracted. Then in the right hand side of (5) only permutations
which map the first (j = 0) index into itself can contribute. There is also
only one value of that index which is unequal to all the others, if they are all
different. The remaining permutations are over SD−1 acting on the remaining
values

εµµ1...µD−1
εµν1...νD−1 = det(g)

∑
P∈SD−1

(−1)P
D−1∏
j=1

δ
νj

Pµj

For example, we derive expressions in four dimensional ordinary Minkowski
space. Then

εµνρσεµαβγ = −
(
δν
αδρ

βδσ
γ + δσ

αδν
βδ

ρ
γ + δρ

αδσ
βδν

γ − δρ
αδν

βδ
σ
γ − δσ

αδρ
βδν

γ − δν
αδσ

βδρ
γ

)
.

If you then contract again, σ with γ, you get

εµνργεµαβγ = −
(
δν
αδρ

βδ
γ
γ + δγ

αδν
βδ

ρ
γ + δρ

αδγ
βδν

γ − δρ
αδν

βδγ
γ − δγ

αδρ
βδ

ν
γ − δν

αδγ
βδρ

γ

)

= −
(
4δν

αδρ
β + δρ

αδν
β + δρ

αδν
β − 4δρ

αδν
β − δν

αδρ
β − δν

αδρ
β

)

= −2
(
δν
αδρ

β − δρ
αδν

β

)
.

Contracting once or twice again,

εµνργεµνβγ = −2
(
δν
νδ

ρ
β − δρ

νδ
ν
β

)
= −2

(
4δν

νδ
ρ
β − δρ

β

)
= −6δρ

β ,

εµνργεµνργ = −6δρ
ρ = −24.

1 Uses of ε

1.1 Determinants

Consider an N ×N matrix A with matrix elements Aj,k. What is its deter-
minant? Two easy answers:

det A = εµ1µ2...µN
∏
j

Aj,µj
= εµ1µ2...µN

∏
j

Aµj ,j,

2Except Misner Thorne and Wheeler put the sign(det(g)) on the contravariant ε rather
than the covariant one, as do Bjorken and Drell even in flat Minkowski space.
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where we are using an N dimensional Euclidean ε. Of course summation over
each µj is understood. That the two expressions are equivalent is shown by
the same argument that showed the equivalence of (3) and (4), based on the
product being unchanged by permuting the factors. Many properties of the
determinant follow directly (a) the expansion by minors3 (b) antisymmetry
under interchange of two rows or two columns, (c) linearity in each row and
in each column. Furthermore, we may note that

εµ1µ2...µN
∏
j

Aµj ,νj
= detA εν1ν2...νN , (6)

because the expression is totally antisymmetric under permutations of the
ν’s and is detA when they are in order. From this expression, it is obvious
that the determinant of a product is the product of the determinants:

det AB = εµ1µ2...µN
∏
j

(AB)µj ,j = εµ1µ2...µN
∏
j

Aµj ,νj
Bνj ,j

= detA εν1ν2...νN
∏
j

Bνj ,j = detA detB.

3Alias cofactor expansion, expansion by row or column.


