$\epsilon_{i j k}$ and cross products in 3-D Euclidean space

These are some notes on the use of the antisymmetric symbol $\epsilon_{i j k}$ for expressing cross products. This is an extremely powerful tool for manipulating cross products and their generalizations in higher dimensions, and although many low level courses avoid the use of ϵ, I think this is a mistake and I want you to become proficient with it.

In a cartesian coordinate system a vector \vec{V} has components V_{i} along each of the three orthonormal basis vectors \hat{e}_{i}, or $\vec{V}=\sum_{i} V_{i} \hat{e}_{i}$. The dot product of two vectors, $\vec{A} \cdot \vec{B}$, is bilinear and can therefore be written as

$$
\begin{align*}
\vec{A} \cdot \vec{B} & =\left(\sum_{i} A_{i} \hat{e}_{i}\right) \cdot \sum_{j} B_{j} \hat{e}_{j} \tag{1}\\
& =\sum_{i} \sum_{j} A_{i} B_{j} \hat{e}_{i} \cdot \hat{e}_{j} \tag{2}\\
& =\sum_{i} \sum_{j} A_{i} B_{j} \delta_{i j}, \tag{3}
\end{align*}
$$

where the Kronecker delta $\delta_{i j}$ is defined to be 1 if $i=j$ and 0 otherwise. As the basis vectors \hat{e}_{k} are orthonormal, i.e. orthogonal to each other and of unit length, we have $\hat{e}_{i} \cdot \hat{e}_{j}=\delta_{i j}$.

Doing a sum over an index j of an expression involving a $\delta_{i j}$ is very simple, because the only term in the sum which contributes is the one with $j=i$. Thus $\sum_{j} F(i, j) \delta_{i j}=F(i, i)$, which is to say, one just replaces j with i in all the other factors, and drops the $\delta_{i j}$ and the summation over j. So we have $\vec{A} \cdot \vec{B}=\sum_{i} A_{i} B_{i}$, the standard expression for the dot product ${ }^{1}$

We now consider the cross product of two vectors, $\vec{A} \times \vec{B}$, which is also a bilinear expression, so we must have $\vec{A} \times \vec{B}=\left(\sum_{i} A_{i} \hat{e}_{i}\right) \times\left(\sum_{j} B_{j} \hat{e}_{j}\right)=$ $\sum_{i} \sum_{j} A_{i} B_{j}\left(\hat{e}_{i} \times \hat{e}_{j}\right)$. The cross product $\hat{e}_{i} \times \hat{e}_{j}$ is a vector, which can therefore be written as $\vec{V}=\sum_{k} V_{k} \hat{e}_{k}$. But the vector result depends also on the two input vectors, so the coefficients V_{k} really depend on i and j as well. Define them to be $\epsilon_{i j k}$, so

$$
\hat{e}_{i} \times \hat{e}_{j}=\sum_{k} \epsilon_{k i j} \hat{e}_{k}
$$

[^0]It is easy to evaluate the 27 coefficients $\epsilon_{k i j}$, because the cross product of two orthogonal unit vectors is a unit vector orthogonal to both of them. Thus $\hat{e}_{1} \times \hat{e}_{2}=\hat{e}_{3}$, so $\epsilon_{312}=1$ and $\epsilon_{k 12}=0$ if $k=1$ or 2 . Applying the same argument to $\hat{e}_{2} \times \hat{e}_{3}$ and $\hat{e}_{3} \times \hat{e}_{1}$, and using the antisymmetry of the cross product, $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$, we see that

$$
\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1 ; \quad \epsilon_{132}=\epsilon_{213}=\epsilon_{321}=-1,
$$

and $\epsilon_{i j k}=0$ for all other values of the indices, i.e. $\epsilon_{i j k}=0$ whenever any two of the indices are equal. Note that ϵ changes sign not only when the last two indices are interchanged (a consequence of the antisymmetry of the cross product), but whenever any two of its indices are interchanged. Thus $\epsilon_{i j k}$ is zero unless $(1,2,3) \rightarrow(i, j, k)$ is a permutation, and is equal to the sign of the permutation if it exists.

Now that we have an expression for $\hat{e}_{i} \times \hat{e}_{j}$, we can evaluate

$$
\begin{equation*}
\vec{A} \times \vec{B}=\sum_{i} \sum_{j} A_{i} B_{j}\left(\hat{e}_{i} \times \hat{e}_{j}\right)=\sum_{i} \sum_{j} \sum_{k} \epsilon_{k i j} A_{i} B_{j} \hat{e}_{k} . \tag{4}
\end{equation*}
$$

Much of the usefulness of expressing cross products in terms of ϵ 's comes from the identity

$$
\begin{equation*}
\sum_{k} \epsilon_{k i j} \epsilon_{k \ell m}=\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell} \tag{5}
\end{equation*}
$$

which can be shown as follows. To get a contribution to the sum, k must be different from the unequal indices i and j, and also different from ℓ and m. Thus we get 0 unless the pair (i, j) and the pair (ℓ, m) are the same pair of different indices. There are only two ways that can happen, as given by the two terms, and we only need to verify the coefficients. If $i=\ell$ and $j=m$, the two ϵ 's are equal and the square is 1 , so the first term has the proper coefficient of 1 . The second term differs by one transposition of two indices on one epsilon, so it must have the opposite sign.

We now turn to some applications. Let us first evaluate

$$
\begin{equation*}
\vec{A} \cdot(\vec{B} \times \vec{C})=\sum_{i} A_{i} \sum_{j k} \epsilon_{i j k} B_{j} C_{k}=\sum_{i j k} \epsilon_{i j k} A_{i} B_{j} C_{k} . \tag{6}
\end{equation*}
$$

Note that $\vec{A} \cdot(\vec{B} \times \vec{C})$ is, up to sign, the volume of the parallelopiped formed by the vectors \vec{A}, \vec{B}, and \vec{C}. From the fact that the ϵ changes sign under
transpositions of any two indices, we see that the same is true for transposing the vectors, so that

$$
\begin{aligned}
\vec{A} \cdot(\vec{B} \times \vec{C})=-\vec{A} \cdot(\vec{C} \times \vec{B}) & =\vec{B} \cdot(\vec{C} \times \vec{A})=-\vec{B} \cdot(\vec{A} \times \vec{C}) \\
& =\vec{C} \cdot(\vec{A} \times \vec{B})=-\vec{C} \cdot(\vec{B} \times \vec{A})
\end{aligned}
$$

Now consider $\vec{V}=\vec{A} \times(\vec{B} \times \vec{C})$. Using our formulas,

$$
\vec{V}=\sum_{i j k} \epsilon_{k i j} \hat{e}_{k} A_{i}(\vec{B} \times \vec{C})_{j}=\sum_{i j k} \epsilon_{k i j} \hat{e}_{k} A_{i} \sum_{l m} \epsilon_{j l m} B_{l} C_{m} .
$$

Notice that the sum on j involves only the two epsilons, and we can use

$$
\sum_{j} \epsilon_{k i j} \epsilon_{j l m}=\sum_{j} \epsilon_{j k i} \epsilon_{j l m}=\delta_{k l} \delta_{i m}-\delta_{k m} \delta_{i l} .
$$

Thus

$$
\begin{aligned}
V_{k} & =\sum_{i l m}\left(\sum_{j} \epsilon_{k i j} \epsilon_{j l m}\right) A_{i} B_{l} C_{m}=\sum_{i l m}\left(\delta_{k l} \delta_{i m}-\delta_{k m} \delta_{i l}\right) A_{i} B_{l} C_{m} \\
& =\sum_{i l m} \delta_{k l} \delta_{i m} A_{i} B_{l} C_{m}-\sum_{i l m} \delta_{k m} \delta_{i l} A_{i} B_{l} C_{m} \\
& =\sum_{i} A_{i} B_{k} C_{i}-\sum_{i} A_{i} B_{i} C_{k}=\vec{A} \cdot \vec{C} B_{k}-\vec{A} \cdot \vec{B} C_{k},
\end{aligned}
$$

so

$$
\begin{equation*}
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B} \vec{A} \cdot \vec{C}-\vec{C} \vec{A} \cdot \vec{B} \tag{7}
\end{equation*}
$$

This is sometimes known as the bac-cab formula.
Exercise: Using (5) for the manipulation of cross products, show that

$$
(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=\vec{A} \cdot \vec{C} \vec{B} \cdot \vec{D}-\vec{A} \cdot \vec{D} \vec{B} \cdot \vec{C}
$$

The determinant of a matrix can be defined using the ϵ symbol. For a 3×3 matrix A,

$$
\operatorname{det} A=\sum_{i j k} \epsilon_{i j k} A_{1 i} A_{2 j} A_{3 k}=\sum_{i j k} \epsilon_{i j k} A_{i 1} A_{j 2} A_{k 3} .
$$

From the second definition, we see that the determinant is the volume of the parallelopiped formed from the images under the linear map A of the three unit vectors \hat{e}_{i}, as

$$
\left(A \hat{e}_{1}\right) \cdot\left(\left(A \hat{e}_{2}\right) \times\left(A \hat{e}_{3}\right)\right)=\operatorname{det} A
$$

In higher dimensions, the cross product is not a vector, but there is a generalization of ϵ which remains very useful. In an n-dimensional space, $\epsilon_{i_{1} i_{2} \ldots i_{n}}$ has n indices and is defined as the sign of the permutation $(1,2, \ldots, n) \rightarrow$ $\left(i_{1} i_{2} \ldots i_{n}\right)$, if the indices are all unequal, and zero otherwise. The analog of (5) has $(n-1)$! terms from all the permutations of the unsummed indices on the second ϵ. The determinant of an $n \times n$ matrix is defined as

$$
\operatorname{det} A=\sum_{i_{1}, \ldots, i_{n}} \epsilon_{i_{1} i_{2} \ldots i_{n}} \prod_{p=1}^{n} A_{p, i_{p}} .
$$

[^0]: ${ }^{1}$ Note that this only holds because we have expressed our vectors in terms of orthonormal basis vectors.

