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1 Frequency and Angular Distribution

We have found the expression for the power radiated in a given solid angle,
as a function of time, to be

dP(t) ., N

[Note A is not the vector potential here!l] The energy into a solid angle, over
all times, is

aw. e 9 [ 5 2
= [ 1A= [ AW,

where A(w) is the Fourier transform of A(t),

Aw) = \/%7 /O:O A(t) e™tdt.
As A(t) is real, A(—w) = (A(w))*, so

AW e s

g =2 1A,

and we can define the energy per unit solid angle per unit frequency,




504: Lecture 24 Last Latexed: April 27, 2011 at 10:33 2

where t = t, + R(t.)/c, dt/dt. = 1 + (dR/cdt.) = 1 — - §(t,), So expressing
the integral over ., we have

2 oo n X <(ﬁ - _)) X 5)
W) = | 4 2 / piw(te+R(te)/o) S dt,.
8m2c J-o (1 —n - B)Q

and now that there are not references to ¢ left we can drop the subscript e.

Assuming the region in which ﬁ is nonzero is small compared to R, we can
write R(t) = R —n - 7(t), where the observer is a distance R from the origin,
which is near the region where the scattering occurs, and () is the position
of the particle relative to that origin. Then

i (0= 8) x 5)
sz/c / uu(t n-7(t)/c) _) dt.
) 87?20 (1—n-p)?

In calculating d?I/dwdS) the phase factor e™¥/¢ will be irrelevant. We note
that the piece in the integrand multiplying the exponential can be written
as a total time derivative:

dfax@xP] _ ax@xd) ax@xde-d)
dt| 1-n-3 1—-n-p0 (1—n-p)?
_ (BB~ 5) + [ )n — (A B)
(1—a- 5
_ (B —P) - (L —q-p)
(1= B
- ﬁx((ﬁ—q)xﬁ)
(- gp

Thus we have

[ 1 sz/c/ uu(t a-r(t)/c) & d |nXx ( ?) (1)
871'20 dt 1—n- ﬁ

It may be useful to integrate by parts, but we will also see, when we discuss
the low frequency limit of bremsstrahlung, that this is useful as is.
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Integrating by parts, assuming that boundary terms at ¢ = 400 can be

discarded, and inserting in the intensity, we have
d&2] 2> 2
dwd) ~ 4m2c

/ i (t=AT(D)/0) 1 s (n X 5) () dt

—00

2 Wigglers and Undulators

We saw that the pulse of radiation received by an observer from an ultrarela-
tivistic charged particle undergoing transverse acceleration consists of many
frequencies up to an X-ray cutoff. This unintentional effect of early high en-
ergy accelerators was tapped into by condensed matter experimentalists and
biologists who could make use of very intense short pulses of X-rays. But for
many purposes a monochromatic rather than broad-spectrum source would
be useful.

Enhanced radiation is also possible if you want it. To achieve this, one can
produce periodic motion of the particles with a sequence of magnets, called
either wigglers or undulators, depending on how significant the oscillations
are. A sequence of alternately directed magnets can produce a charged parti-
cle path with transverse sinusoidal oscillations, x = asin27z/)\;. The angle
of the beam will vary by 1y = Al = dz/dz = 2wa/Ng. The spread in angle
of the forward radiation is 6, ~ 1/, centered on the momentary direction of
the beam. Thus if ¥y > 6., an observer will be within the field only part of
each oscillation, and will see the source turning on and off. In this case we
have a wiggler. At the
source, that frequency is Y :;jj:f\]/y
Bc/Xo. Each wiggle sends a — ?>
pulse of time duration a frac-
tion roughly (6,/10) of one | !
period, so | A

Ate = (Xo/Be) (0 /1),

but this is compressed for the observer by a factor of 1 —n - ﬁ ~ 1/2792, so
the received pulse has At = \g/2¢37v31y and has frequencies up to f ~ ﬁ =~
2931hgc/Ng. Each pulse is incoherent, so the intensity is N times that of a
single wiggle.

In the other limit, 1)y < 0,, the observer is always in the intense region of

the beam, but the beam is radiating coherently. In the particle’s rest frame
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the disturbing fields have a Fitzgerald-contracted wavelength Ao/7, going by
at (e, so the particle sees it-
self oscillating at

W' = 2meyB/ N & 2wy No.

But the observer in the
lab would say the par-
ticle’s clock is running
slow and therefore the
source frequency is w'/7,
but the Doppler con-
traction of the pulse
increases_the frequency by
1/(1=n-F3) = 292/ (14+26%).
So all together the frequency observed is

/

L 4rey?
v1—n-3)  Ao(l4+4%6?)

2w

= —

Note this is coherent radiation, so the intensity is proportional to N? and
the frequency has a spread proportional to 1/N

We will be content with this rather qualitative discussion and skip the
fine details of pp 686-694.

3 Thomson Scattering

We saw (14.18) that in the particle’s rest frame the electric field is given by

E:Lﬁx(ﬁxﬁ),

R

so the amplitude corresponding to a particular polarization vector € is

g*-Ezig*-(ﬁx(ﬁxﬁ)):ég*-ﬁ,

as € -n = 0. The power radiated with this polarization per sterradian is

aP ¢ ..
a0~ 1 |

_-‘2
.U‘
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If a free electron has an electric field

E(Zt) = €y Byttt
incident on it, it will have an acceleration

’U(t) _ E—'OEEoeilZ-:i’fiwt
m

If the motion is sufficiently limited to ignore the change in position and keep
the particle non-relativistic, (z ~ eFy/mw? < A = 27c/w), the time average

12 . .
of |4 = (" 9)(7 - &) is

162‘E0‘2
2 m?

dP c e \?
N R =) 1. el
<dQ> 81 o <m02> € - ol

Dividing this by the incident energy flux c|Ey|?/87 we get the cross section

dO' 62 2_,*_,2
a0~ \ma ) €@l

If the scattering angle is 6 and the incident beam is unpolarized and the cross
section summed over final polarizations, the factor of

| 2

|€*'€0

and

1 . L2 1 2 27 ) )
QZZ‘Ef'Eo‘ = ﬁ/o d¢i/0 dosl(coscos ¢y, singg, —sin b cos ¢y)
i f
-(Cos¢i,sin¢i,0)]2
1

2m 2w
= —/0 d¢i/0 doys [(cos@cos@cosd)i+sin¢fsin¢i]2

272

= % [cos2 0+ 1}

where I have taken the incident direction to be z and the final (sin 6, 0, cos 8).
Thus the unpolarized cross section is

do ( e2 )2 14 cos? 0

aQ 2

mce?
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This is called the Thomson formula. The corresponding total cross section

is )
8t [ €2
or=—|—=1| .
r 3 \mc?

The quantity in parentheses is called the classical electron radius, roughly
the radius at which a conducting sphere of charge e would have electrostatic
energy e%/2r = mc?. (The factor of 1/2, or of 3/5 for a uniformly charged
sphere, is discarded.)

This formula disregarded recoil of the electron when hit by the elec-
tromagnetic wave. Of course classically the cross section could have been
measured with an arbitrarily weak field, so recoil could be neglected, but
quantum-mechanically the minimum energy hitting the electron is hw, which
gives a significant recoil if fiw ~ mc?. In fact, if we take quantum mechanics
into account we are considering Compton scattering, for which, we learned
as freshman, energy and momentum conservation insure that the outgoing
photon has a increased wavelength,

h k' 1
N=XA+—(1—-cosf), or —= :
(1 — cos?6)

mec k hw

1+ —
mc?

It turns out that the quantum mechanical calculation (for a scalar particle)
is the classical result times (k'/k)%:

2 2 1 2
B é |g*.go|2
mc? k
QM, scalar

do
d92




