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Physics 504, Lecture 12
March 3, 2011

1 Multipole Expansion, Vector Spherical Har-

monics

Last time we derived the expansion of the Green’s function for the scalar
helmholtz equation, (∇2 + k2)Ψ = −δ(~x − ~x ′), but we observed that it
was awkward to use it for each of the Cartesian components of the vector
potential ~A. Indeed, we found for ` = 0 that ~A is dominated by the electric
dipole moment, which looks much like an ` = 1 effect. When we discussed
the resonant cavity formed by the Earth and its ionosphere, we considered
Ψ = ~r · ~E or Ψ = ~r · ~H , which is more compatible with using spherical
coordinates. Because away from sources ~E and ~H are both divergenceless,
each of these Ψ’s obeys the free Helmholtz equation away from the sources,
and can be expanded as we did in lecture 5: Either

~r · ~H
(M)
`m =

`(` + 1)

k
g`(kr)Y`m(θ, φ), ~r · ~E(M) = 0 (1)

or ~r · ~E
(E)
`m = −Z0

`(` + 1)

k
g`(kr)Y`m(θ, φ), ~r · ~H(E) = 0. (2)

for magnetic multipole modes (M) (Eq. 1) or electric multipole modes (E)
(Eq. 2). In either case g` satisfies the spherical Bessel equation(

∂2

∂r2
+

2

r

∂

∂r
− `(` + 1)

r2
+ k2

)
g`(kr) = 0

with solutions outside the source region proportional to h
(1)
` (kr) for outgoing

waves. As we found in that lecture, the transverse components are given by

~E
(M)
`m = Z0g`(kr)~LY`m, ~H

(M)
`m = − i

kZ0

~∇× ~E
(M)
`m (3)

or ~H
(E)
`m = g`(kr)~LY`m(θ, φ), ~E

(E)
`m = i

Z0

k
~∇× ~H

(E)
`m . (4)

We define the vector spherical harmonic functions, for ` ≥ 1, as

~X`m(θ, φ) :=
1√

`(` + 1)
~LY`m(θ, φ),
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with orthogonality properties

∫
dΩ ~X∗

`′m′ ~X`m =
1√

`(` + 1)
√

`′(`′ + 1)

∫
dΩ

[
1

2

(
L∗

+Y ∗
`′m′

)
(L+Y`m)

+
1

2

(
L∗
−Y ∗

`′m′
)

(L−Y`m) + (L∗
zY

∗
`′m′) (LzY`m)

]

=
∫

dΩ
Y ∗

`′m′
[

1
2
L−L+ + 1

2
L+L− + L2

z

]
Y`m√

`(` + 1)
√

`′(`′ + 1)

=

√
`(` + 1)√
`′(`′ + 1)

∫
dΩ Y ∗

`′m′Y`m

= δ``′δmm′

where
∫

dΩ =
∫ π
0 sin θdθ

∫ 2π
0 dφ, we have used ~L 2 = 1

2
L−L+ + 1

2
L+L− + L2

z ,∫
dΩ(~LΦ)∗Ψ =

∫
dΩΦ∗~LΨ, and

∫
dΩY ∗

`′m′Y`m = δ``′δmm′ . We also have

∫
dΩ ~X∗

`′m′ ·
(
~r × ~X`m

)
=

1√
`(` + 1)

√
`′(`′ + 1)

∫
dΩ

(
~L∗Y ∗

`′m′
)
· (~r × ~L)Y`m

=
1√

`(` + 1)
√

`′(`′ + 1)

∫
dΩY ∗

`′m′~L · (~r × ~L)Y`m

=
1√

`(` + 1)
√

`′(`′ + 1)

∫
dΩY ∗

`′m′~r · (~L× ~L)Y`m = 0.

Note in the last equality, it is not because ~L× ~L vanishes. Indeed, ~L× ~L =
εijkêiLjLk = 1

2
εijkêi[Lj , Lk] = i~L but because ~L is all angular derivatives, it

is perpendicular to ~r, ~r · ~L = 0.
We could reexpress our results for the radiation of arbitrary sources, in

terms of the appropriate expansion coefficients a` multiplying h
(1)
` for ~r ·

~H or ~r · ~E. But the justification for claiming ~r · ~E and ~r · ~H satisfy the
Helmholtz equation required them to be divergenceless, which ~r · ~E is not in
the presence of sources. The trick is to evaluate ~E ′ := ~E + i ~J/ωε0, so ~r · ~E ′

and ~r · ~H do satisfy inhomogeneous Helmholtz equations with sources given
by ρ and ~J , with the latter supplemented by any intrinsic magnetization.
This is somewhat messy, given in section 9.10, but we will not elaborate. A
major use has the sources given by quantum mechanical operators for atomic
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or nuclear structure, and the vector potential is then a wave function for
outgoing photons, giving a decay probabilities rather than radiation power
flux. But we will skip this as well, and proceed to discuss scattering of
electromagnetic waves.

2 Scattering

Accelerating charges radiate. We have discussed what a specified oscillating
current density will do, but we need to also discuss what current density will
be created by an incident electromagnetic field. That is, scattering.

If we have some material which will respond to an incident electromag-
netic field, it will also radiate field, generally in all directions. Of most
interest is an incident plane wave, and the amplitude for an emitted wave in
a particular direction. We will consider small scatterers, of size � λ, and an
incident plane wave1

~Einc = ~εiEie
ik~ni·~x, ~Hinc = ~ni × ~Einc/Z0.

where a time dependence e−iωt is understood and k = ω/c. If the scatterer is
then induced to have electric and magnetic dipole moments ~p and ~m induced
by this wave, we will get dipole radiation (for r � λ) as derived earlier

~Esc =
k2eikr

4πε0r
[(r̂ × ~p)× r̂ − r̂ × ~m/c] , ~Hsc = r̂ × ~Esc/Z0.

For classical particle dynamics,
dσ

dΩ
is the area of the incident beam which

gets scattered into the solid angle dΩ. For a wave, we can’t follow individual
particles. But the incident energy flux is uniform, and we can define the dif-
ferential cross section as the power scattered into a given solid angle divided
by the incident flux.

The flux is given by

1

2
r̂ ·
(
~Esc × ~H∗

sc
)

=
1

2Z0
r̂ ·
(
~Esc ×

(
r̂ × ~E∗

sc
))

=
1

2Z0

~Esc · ~E∗
sc,

1I am using ~εi instead of ~ε0 to remove some of the confusion from using the same symbol
as for the permittivity of free space ε0. I will also use i (for incident) more generally instead
of 0.
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as r̂ · ~Esc = 0.
But the outgoing wave consists of two polarizations, and we can ask

what the cross section is for a given polarization, ~ε, for an incident wave with
polarization ~εi, with the field projected by ~ε ∗ · ~E. Then we have the polarized
differential cross section

dσ

dΩ
(r̂,~ε; n̂i,~εi) = r2

∣∣∣~ε ∗ · ~Esc
∣∣∣2∣∣∣~ε∗i · ~Einc
∣∣∣2

=
k4

(4πε0Ei)2
|~ε ∗ · ~p + (r̂ ×~ε ∗) · ~m/c|2 .

Because we are assuming the scatterers are small compared to a wave-
length, we expect the electric and dipole moment to be quasi-static responses
to the applied fields, and thus not dependent on ω, so the overall scattering
strength is proportional to k4 ∝ ω4, which is known as Rayleigh’s law.

The responses ~p and ~m can be calculated in simple models. We will
consider a uniform dielectric sphere of radius a, with dielectric constant εr =
ε/ε0, and no magnetization, permeability µ = µ0.

2.1 Dielectric Sphere

Last term you found (Jackson 4.56) that a non-magnetic dielectric sphere of
radius a has a static induced dipole moment

~p = 4πε0

(
εr − 1

εr + 2

)
a3 ~Einc,

and of course ~m = 0. So

dσ

dΩ
(r̂,~ε; n̂i,~εi) = k4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣
2

|~ε ∗ · ~εi|2 .

The scattered wave has the electric field in the plane of the incident
polarization and r̂; if ~ε ∗ ⊥ ~εi the amplitude is zero.

If the incident wave is unpolarized, say coming in the z direction, we may
take the average over polarization in φ, ~εi = (cos φ, sin φ, 0). If we are looking
at an angle θ, say with r̂ = (sin θ, 0, cos θ), the two polarization vectors are
~ε‖ = (cos θ, 0, sin θ) in the scattering plane and ~ε⊥ = (0, 1, 0) perpendicular
to it.
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Then
∣∣∣~ε ∗

‖ · ~εi

∣∣∣2 = cos2 θ cos2 φ and |~ε ∗
⊥ · ~εi|2 = sin2 φ, with average values

(over φ of 1
2
cos2 θ and 1

2
respectively. So

dσ‖
dΩ

=
k4a6

2

∣∣∣∣εr − 1

εr + 2

∣∣∣∣
2

cos2 θ,

dσ⊥
dΩ

=
k4a6

2

∣∣∣∣εr − 1

εr + 2

∣∣∣∣
2

.

The polarization is defined by the difference over the sum,

Π(θ) :=

dσ⊥
dΩ

− dσ‖
dΩ

dσ⊥
dΩ

+
dσ‖
dΩ

(
=

sin2 θ

1 + cos2 θ
for dielectric sphere

)

If we don’t measure the polarization of the scattered light, the unpolarized
cross section is the sum of the two,

dσ

dΩ
=

k4a6

2

∣∣∣∣εr − 1

εr + 2

∣∣∣∣
2 (

1 + cos2 θ
)

and the total cross section is the integral of this over dΩ =
∫ π
0 sin θdθ

∫ 2π
0 dφ,

σ = πk4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣
2 ∫ 1

−1
d(cos θ)

(
1 + cos2 θ

)

=
8π

3
k4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣
2

.

In Jackson §10.1C a small perfectly conducting sphere is considered as
the scatterer, but we will skip that.


