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Physics 504, Lectures 6
Feb 10, 2011

1 Lecture 6
1.1 Power Loss at Interface
Last time we found the fields die off with skin depth
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where H | is the tangential magnetic field at the surface outside the conductor,

and
E|‘: M(1—1’)’IA”L><]:_7»||.
V 20

There are two ways to calculate the power. First, the flow of energy
through the surface is given by the Poynting vector S = F x H. Because we
are using complex fields £ and H o e~**, of which only the real parts are

physical, we need <§> = % Re E x H*. So the power loss per unit area is
dPloss Ao 1 [pew . A > o
A —n~<S>:—§ 5y " Re [(1—@)(anH)xHH]
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The other way is to ask about the ohmic losses, with power lost per unit
volume of 1J - E* = |J[*/20. As |J| = 0E. = §|H”|e_f/5, the power loss
per unit area is

dPlOSS
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We can also express this in terms of the surface current, where we mean the
total current near the surface,

- o0 - 1, = [ N —g(1—i A 7
Keﬁ:[) dfj(f):g XHH/O d{(l—z)e ¢a )/6:n><H”.

Thus P )
loss 2
—8 = — | K gl”.
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Thus we may view 1/0¢ as the surface resistance, or the ratio EH / [?eff =
(1 —14)/0d as the surface impediance Z.

1.2 Waveguides

As our situation involves time-independent boundary conditions and linear
equations, we can use a fourier transform in time, with

—

E@t) = Ez,y,2)e™

t
B(#,t) = B(z,y,z)e ™

81

with the understanding that the physical fields are the real part of these ex-
pressions, and of course we could have superpositions of different frequencies,
but these don’t interact.

In the interior p = 0, J= 0, so

ﬁxﬁ:—gzw, V-E=0, V-B=0,
. - - - dD OF .
V x uV x Mat I BT TwiLe

and similarly
(V2 + w2ue> B=0. (1)
Let us assume our problem involves a cylinder of arbitrary cross-section,

but uniform in z (though possibly only on an interval in z, possibly capped
at the ends). Then we can also fourier transform in z,

E(x,y7 Z’t) - E(x,y)eikz_i“t, E(I,y, th) _ §<I7y>eikz—iwt7
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where k could take either sign, and we mig;ht take_) a superposition if we need
to. Then the Helmholtz equation (1) for B and E give

2 o o (E) _ 2, 0 0
{Vt—k(uew —k)]<§>—07 V; W—F@
Break down the vectors into transverse and longitudinal parts:

E=FE,2+E,, B=B.2+DB, withE, L2 B, L2

Now
(VxE), = (V,xE,). =iwB., (2)
L OE, .
(Vx E), = éxa—t—éthEZ:int. (3)
2
For any vector V, 2 x (2 x V) = =V + 2(2 - V), so for a transverse vector

2% (2 x V;) = —Vj. Taking 2x Eq. (3) gives

% —V,E, = —iw? x B, (4)
The same decomposition of VxB= —iwueE gives
(§t X ét)z = —iwuek, (5)
% —ViB. = iwpes x Ey. (6)
Of course the divergencelessness of E and B give
R
Making use of the fourier transform in z, we have
ikE, +iwi x B, = V,E, (7)
ikB; —iwpuei x B, = V,B, (8)

Solving 8 for B, and plugging into 7, and then the reverse for Et, gives

.kﬁtEZ — w2 X 6th
E =
! ! w?pe — k? )

k:VB V.E
B, = (Nt XV (10)
w?pe —k
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Thus E, and B, determine the rest, unless k? = k2 := pew?, in which
case both F, and B, are zero. Then there are no longitudinal fields, and
we call this a transverse electromagnetic (TEM) wave. It travels in the z
direction at the speed 1/,/pt€ which we would have for a plane wave in an
infinite medium, and with the wave number k = ky := w,/p€ that the wave
Would have in an infinite medium. These TEM fields satisfy Vt Et =0,
Vt X Et = iwB, = 0, and therefore Et = —th) for some (not necessarlly
singlevalued) function ® on the cross section, with V?® = 0. As EH =0
at the boundary, each boundary is an equipotential of ®, and if the cross
section is simply connected, the only solution is ® = constant, Et = 0. Thus
there can be no TEM wave on a simply connected cylinder, but the TEM
is the principal wave on a coaxial cable (which has an inner and an outer
conductor, with different ®, or for parallel wires, as in an old 300 € television
cable. Note that if ;4 and € are nondispersive, so is the TEM wave, with no
cutoff on the transmission frequency or wavelength.

For perfectly conducting waveguides we saw that at the boundary 7 X E =
0, 7-B = 0. This means F, = 0 and E, || @ at the boundary. From
- (8BZ/5’Z —ijlew’ X E, — VtBZ) = 0, the first two terms vanish, the second
because E; || 7 at the boundary, so dB./dn| ¢ = 0. Thus E, satisfies a
Dirichlet zero condition and B, satisfies a Neumann zero condition boundary
conditions in two dimensions. For simply connected cross section, there are in
general no nonzero solutions, except for certain discrete values of the constant
pew? — k2, and the allowed values will, in general, be different for the two
possibilities. So in general if there is a solution for one condition, say F, = 0
on the boundary, we will have B, = 0, the magnetic field is purely transverse,
and we call this a transverse magnetic (TM) mode. For the other condition,
ii-V,B, = 0 on the boundary, we have E, = 0, E is purely transverse, and
this is called a transverse electric (TE) mode.

1.3 Waveguide impediance, modes, and cutoff frequen-
cies
Note that for a TM mode with vanishing B,, (9) and (10) give
TM: (k2 —k)E, = ikVE., (k2 — k) B, = ipew? x V,E.
or Ht ewk 12 x Et, while for a TE mode with vanishing F,
TE: (k2 —k)E; = —iw2 x V,B., (k¥ —k*)B, = ikV,B.,
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so By = —w? x gt/k Premultiplying by 2x, we have H; = kZ X E;/pw. In
both cases we have

_’71A _' o ﬁ ko\/Z ™
Ht—EZXEt, Z = w
’%:?\/g TE

ikz—iwt

Now each component of £ and B is of the form U(z,y)e where each
U satisfies

(Vi+9?) ¥ =0
For the TM and TE modes they are determined by a single scalar v, and for
t = z = 0 are given by

V2 = pe? — k2

TM: E. =1, E,=iky >V
TE: H, =4, H,=iky 2V

Ylp =0
n -Vl =0,

with (V? 4+~%) ¢ = 0. Note that with these conditions,
0=/¢*<V?+7 /Vt
A

where A is the cross section. The first integral is a divergence, so is §;, ¥*7 -

PV — / (Vi))* - Vip + 72 /A |1,

ﬁﬂﬁ, which vanishes from either boundary condition, the second integral is
strictly positive unless 1 is a constant!, and the coefficient of 72 is positive,
so ~2 is positive. There will be solutions of the two-dimensional Helmholtz
equation for discrete positive values 73. For each frequency w, there can be
waves with wave numbers

R = pew® =3,

so only waves with w > wy := 7,//t€ can propagate. With k3 < 0 we can
have cutoff modes (or evanescent modes) which do note propagate but decay
with z. Note ky < \/p€w, the value the wavelength would have in an infinite
medium, so the wavelength in the waveguide is longer than in R®. The phase
velocity v, = w/ky > 1/,/p€, greater than in R®.

In which case we must have a TE mode, but then E, and B, are both zero, E= 0,
and thus B, = constant.
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1.4 An Example

We see that finding the dispersion of a cylindrical waveguide involves solving
the two dimensional Helmholtz equation with boundary conditions specified
on I', the cross section’s intersection with the surface.

(VZ+192) =0 with ¢p=0(TM) orq- Vel =0 (TE).

There are a number of coordinate systems for which the Laplacian operator
can be separated, and if the boundary shapes are suitable, it is straightfor-
ward to find solutions. Of course the simplest is a rectangular wave guide,
for which we can use cartesian coordinates. This is worked out in Jackson,
section 8.4, and you should definitely work through it (rectangular wave-
guides have appeared on the qualifier!), but it is quite clear and it would
add nothing for me to repeat the solution, so instead, lets consider a circular
cylindrical waveguide of radius r.

Naturally we should use cylindrical coordinates, or for the cross section
simply polar coordinates p, ¢. The Laplace operator in polar coordinates is

2 10 90 108

opdp dp  p?0¢?

R(p)®(¢), we have

P0(9)
BYe

If we make an ansatz that the solution ¢ (p, ¢) =

(13 SR AR()) $(6) + )

=0.
pop” p

Dividing by R(p)®(¢) and multiplying by p* gives

%( 8% aa—R+72pQR( ))
1 ()
"3(0) 00

The first line depends on p but not on ¢, which the second depends on ¢ but
not on p, so they must be equal and opposite constants,

%(; ZR‘FVPR(P)) = C
1 920(9)

(¢) 0¢?
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The second equation,
0°®(¢)
0p?
has the solution ®(¢) = e*V0?  As we need a solution periodic in ¢, that is

®(¢p + 21) = ®(¢), we see that v/C must be an integer, m. Then the first
equation is

+CD(g) = 0

a 6 2 2 2 _
(pappap+7 p-—m ) R(p) =0,

which is the Bessel equation, with solutions regular at the origin given by
In(7P).-

It is straightforward to satisfy the boundary condition by demanding that
~r is a zero of J,, (for TM waves) or of d.J,,,(x)/dz (for TE waves). These
can be looked up in many books?.

We have z; the n’th zero of J,, and x,,
the n’th zero of J/,. In terms of that nu-
merical value, Z,,,, we have v = x,,,/r,
and the tube can only support electromag-
netic waves with a frequency greater than
the cutoff frequency winm = ZTmn /r\/ﬁ
The smallest of these roots is that J;, with
xi7 = 1.8412, and the next is that of J,
with zg)" = 2.4048. If the waveguide is 5
cm in diameter, and filled with air ~ vac-
uum, this gives a cutoff on TE modes of
f =% = 3.5 GHz and 4.6 GHz for the

o

lowest TM mode.

2For example, Arfken III p. 581, or Jackson p. 114 and 370, or, for far more, Abramowitz
and Stegun, p. 409 and 411.



