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1 Local Symmetry and Gauge Fields

Electromagnetism is the basic interaction which controls physics on all scales
from atomic up to planetary, with myriad applications of great technologi-
cal and scientific importance, and we have spent a year looking at some of
these applications, all based on the simple foundational equations, Maxwell’s
Equations and the Lorentz force. But Electromagnetism also has clues to the
elegant structure of local symmetry, and generalizing this symmetry from the
very simple (and not obvious) symmetry of electromagnetism to larger sym-
metry groups is the basis of all of our modern theories of fundamental physics.
That is, it leads the way to understand the theories which describe subatomic
physics, and also somewhat in the direction of gravity! The clue electromag-
netism gives towards this basic principle is in the gauge invariance, which
says that substituting Aµ → Aµ − ∂µΛ makes no change in the physics.

To understand what can come of this, or rather what to think is the origin
of this invariance, we need to discuss several topics from outside classical
electromagnetism.

• Lattice approach to field theories

• Internal field variables

• Global internal symmetries

• Quantum mechanics of a charged particle

• How to make global symmetries local

This we lead us to minimal substitution, covariant derivates, and understand-
ing the electromagnetic field strengths as a form of curvature. It will also
lead to non-Abelian gauge theories, which are the basis of QCD, our current
model of the strong interactions, and Glashow-Salam-Weinberg SU(2)×U(1)
electro-weak theory, which together form the standard model.
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1.1 Lattice approach to field theories

When we discussed the lagrangian approach to electromagnetism, I assumed
you were already familiar with the continuum formulation of dynamics of
a field. Most of you had seen me develop this from the discrete dynamics
where the degrees of freedom are defined on a lattice. These variables could
be displacements, as in describing deformations of a solid, or they could be
internal degrees of freedom, that is, not describing spatial degrees of freedom,
as for example, the electric and magnetic fields (but, as we shall see, these
require a more sophisticated latticization.)

The Lagrangian on the lattice whose continuum limit gives us a field
theory depends on the degrees of freedom φ~s defined on each site ~s, and on
differences of φ~s on neighboring sites. Were there no such difference terms
each site would have dynamics independent of its neighbors, and would not
be a field theory. These difference terms become, in the continuum limit, the
terms in L involving ~∇φ.

For simplicity of insight, we generally take our lattice to be cubic, with lat-
tice sites given by a triple of integers times some lattice spacing. Time starts
out being treated as a continuum, but for relativistic treatments we may
discretize time as well (though then we are no longer doing lagrangian me-
chanics). In addition to the sites on the lattice, we may discuss links, joining
two neighboring sites, and plaquettes, which are squares of four neighboring
sites with the links between them.

1.2 Internal field variables

Let us begin by discussing possible degrees of freedom of a system, associated
with points on a lattice or, in the continuum limit, with each point in space.
This is how we have discussed the electromagnetic fields but not how we have
discussed particles, where we have focussed on their motion through space. In
today’s discussion we will not be discussing motion through ordinary space,
but rather degrees of freedom at fixed points in space.

The degrees of freedom φ take values in some domain. This could be
the positive reals (e.g. temperature), the reals, the complex numbers (wave
function ψ in quantum mechanics), a finite set (spin 1/2 ising model), or a
vector, such as the electric field (again, not quite right).

Perhaps the most intuitive situation is a lattice of points upon which there
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are fixed objects with spin. So at each site j there is a dynamical variable1

~Sj, and the spins can interact with each other, say with a Hamiltonian H =

J
∑

nn
~Si · ~Sj , where the sum is over nearest neighbor sites. Notice that

there is no coupling between the spins and vectors in ordinary space (no

(~rj − ~ri) · (~Sj − ~Si), for example), so the space in which the spins live can be
considered completely independant of ordinary space, and in fact need not be
a three-dimensional space at all. But as long as there are possible rotations
in the space, there will be a symmetry in the theory, because if each spin is
rotated by some orthogonal matrix R, ~Sj → R~Sj, each term ~Si · ~Sj in the
Hamiltonian in unchanged and a solution of the equations of motion will be
transformed into another solution.

The same considerations hold if the dynamical degrees of freedom Sj are
fields, taking independent (though not uncorrelated) values at each spatial
point. That can be considered a continuum limit of the lattice version. Here
the nearest-neighbor type coupling is likely to be replaced by a gradient, say∑

µα ∂µSα∂
µSα, which would keep our internal space and real space uncou-

pled. If the internal space is R
3, then we might have (~∇· ~S)2 terms, and then

space and spin would be coupled with an ~L · ~S term.

1.3 Global internal symmetries

If there is no coupling of the spins with space, the symmetry under rotation
in spin space is called an internal symmetry. A famous example from nuclear
physics is isotopic spin symmetry, where protons and neutrons are a doublet,
treated like the two spin states of a spin 1/2 particle, but with the rotations
having nothing to do with ordinary space, but occurring in isotopic spin
space. Strong interactions are invariant or symmetric under such rotations.
The lagrangian density depends on the nucleon wave function Ψ which has
two complex components at every space-time point, and it is invariant if the
wavefunction undergoes an isospin rotation Ψ(xµ) → ei~ω·~IΨ(xµ), where the

three components of ~I are pauli spin matrices acting on the doublet Ψ. The
isospin rotation has to be the same at all points in spacetime for this to be
a symmetry. Thus it is a global symmetry.

1We are interested here in discussing the direction of ~S, not the possible dynamics of
its magnitude, so assume that |~Sj | is fixed.
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1.4 Quantum mechanics of a charged particle

One way to understand quantum mechanics is to think of momentum and
energy are being differential operators ~p → −ih̄~∇ and E → i∂/∂t. Then a
free nonrelativistic particle with E = ~p 2/2m is described by a wave function

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ

which is Schrödinger’s equation for a free particle. Notice that the field ψ is,
of necessity, complex. Also note that if ψ(xµ) is a solution, so is eiλψ(xµ), as
long as λ is a constant.

As we know from Ms. Noether, a continuous symmetry transformation of
the fields gives rise to a conserved current. For our particle, the classical ~J =
ρ~v becomes −ih̄qψ∗~∇ψ. Noether gives us a general procedure starting from
the lagrangian density. A phase change gives ∆φ = iλφ, the current Jµ =
− ∂L

∂∂µφ
∆φ is just like the kinetic energy part of the lagrangian density with

one derivative left out. For example, the Dirac Lagrangian L = ih̄ψ̄γµ∂µψ−
mψ̄ψ gives a conserved current Jµ = ψ̄γµψ, while for the Klein-Gordon
lagrangian for a charged scalar field, L = h̄2(∂µφ)(∂µφ∗)−m2φ∗φ gives Jµ =
ih̄
2m

(φ∗∂µφ− φ∂µφ
∗).

If the particle is charged and in the presence of an external field Aµ(xν),
this interaction can be incorporated by “minimal substitution”, which is to
say that ~p→ ~p− q ~A/c, E → E − qΦ, so for a non-relativistic particle

ih̄
∂ψ

∂t
=

(
qΦ− h̄2

2m

(
~∇+ iq ~A/h̄c

)2
)
ψ.

We recognize the qΦ as the potential energy term for the charged particle
in an electrostatic field, though the ~A term, giving the interaction with the
magnetic field (and a velocity dependent force) is not so familiar. If we had
derived the Hamiltonian for a non-relativistic particle from the Lagrangian
including the−qUαA

α interaction with an external field, we would have found
this (~P − qA/c)2 term as well, as I understand Schnetzer did do in 502. The
important point, however, is that this equation does not remain invariant
under gauge transformation Aµ → Aµ − ∂µΛ. As Aµ is entering only as an
addition to the derivative operators, this gauge transformation’s only effect
is to add a piece iq∂µΛ/c to each derivative operator, or ∂µ → e−iqΛ/c∂µe

iqΛ/c,
so if ψ satisfies the equation in the original gauge, ψ′ = e−iqΛ/cψ saitisfies the
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equation in the transformed gauge. That is

Aµ → Aµ + ∂µΛ

(Φ → Φ− 1

c

∂Λ

∂t
, ~A→ ~A+ ~∇Λ)

ψ → e−iqΛ/cψ

is an invariance of the theory, and is the correct form of a gauge transfor-
mation, which affects not only Φ and ~A, but also the phase of the wave
function.

Thus the gauge invariance is related to a symmetry of the field ψ un-
der change of phase. Now a complex wave function can be viewed as a
two-component wave function taking values in a two dimensional real space.
What happens if we do a rotation in this two-dimensional space? That is
equivalent to multiplying the wave function by a phase,

ψ(~x) → eiαψ(~x).

or we may think of this as a change in basis used to describe the components
of this vector in this two dimensional space. If the wave function is given a
constant phase shift everywhere in spacetime, this corresponds to the same
change in basis at all points, and there is no change in any physics, and
we are using a global symmetry. But we see here that we have a much
stronger symmetry — we can change the phase independently at each point in
spacetime, provided we simultaneously make the corresponding gauge change
in the vector potential.

Clearly the various equations of motion are invariant under this, and
the Hamiltonian and currents are unchanged. So we have a symmetry of
rotations in a two dimensional space. Note there is no inherent meaning in
distinguishing the real part of the wave function.

Now without the gauge fields we have a symmetry which only holds if the
same phase is applied at all points, which was also true for our lattice of
spins. Such a symmetry is called a global symmetry. If we use different basis
vectors to describe the spins at different points, the value of

∑
α Si αSj α will

depend on our choices of basis for i and j, and not be invariant. But our
electromagnetic field permits a much larger, local symmetry.

Indeed, in a relativistic theory, why should what we choose at one point in
space depend on what we chose at another? Can we make a theory which is
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invariant under independent choices of the coordinates at each point? Elec-
tromagnetism does this for us for our complex field, but what about for
spins?

1.5 Latticizing Quantum Field Theory

In Quantum Field theory, perturbative approaches starting with free par-
ticles work well if the coupling is weak, although even in that case there
are complications arising from intermediate states which correspond to very
short distances between interactions, known as ultraviolet divergences. One
way to attempt to understand these issues is to consider a discretized theory
of degrees of freedom on a lattice, and then investigate the continuum limit.
This gives insight into regularization (avoiding the infinities from ultraviolet
divergence) and renormalization, both in elementary particle theories and in
phase transitions in condensed matter.

We are going to consider field theory on a lattice for a different reason —
because it helps to clarify the fundamental idea of gauge fields.

2 Symmetry

Consider a theory which involves a set of N real fields φi(x
µ) which have an

internal symmetry group2 G under which they transform with a representa-
tion M , so that a particular symmetry transformation G ∈ G acts on the φ
fields by

G : φi(x) 7→ φ′i(x) =
∑
j

Mij(G)φj(x). (1)

If it is a symmetry, the Lagrangian must be invariant. If the kinetic term is
of the usual form, 1

2

∑
µ,i ∂µφi∂

µφi, invariance requires that M is an orthog-
onal matrix

∑
k MkiMkj = δij . That condition also insures the invariance

of the mass term −1
2
m2∑

i φ
2
i , and of any other “potential” term V (

∑
i φ

2
i )

depending only on the “length” of φ. Provided V has that form, we see that
the theory should be invariant under all the orthogonal transformations (1).

2The notation is not completely standard. Many books would use G for the group, G
for the Lie algebra of the group, and g for an element of G. Because we are going to use
g as the analogue of the fundamental charge, I am using G for a group element, G for the
group, and G for the Lie algebra, elements of which will be called A.
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We see that the individual components φi are only projections along the unit
vectors of an arbitrary orthonormal basis of R

N , and do not have separate
intrinsic physical meanings. Alternatively, V might not be invariant under
all of O(N), but only under the subgroup3 G. For example, one important
group is the SU(3) of colors which act on each triplet (in color) of quarks.
Replacing the 3 complex quark fields by 6 real fields, the kinetic term would
be invariant under the group O(6) ∼ SU(4), but the interaction terms are
only invariant under the subgroup SU(3).

So we are going to be considering a symmetry group4 G which has gen-
erators Lb which form a basis of the “Lie algebra” G of the group5. As we
saw for the Lorentz group, the Lie algebra for SO(N) is the set of antisym-
metric real N ×N matrices, with 1

2
N(N − 1) independent generators L̃, or,

for physicists, 1
2
N(N − 1) purely imaginary antisymmetric N ×N matrices.

For SU(3), the generators may be thought of as traceless hermitean 3 × 3
matrices.

2.1 Discretization

How might we approximate the continuum theory on a lattice? Instead of
φi(x) defined for all values of x ∈ R

4, we might have φi(~n) discrete variables
defined only for integer values ~n ∈ Z

4, representing a lattice in space-time
with lattice spacing a, with xµ = anµ. The mass term in the action

−1

2

∫
d4x

∑
i

φ2
i (x) → −1

2
a4

∑
~n∈Z4

∑
i

φ2
i (~n).

3More precisely, the image of G under the representation M : G → N ×N matrices is
a subgroup of O(n).

4We will only consider connected groups which are either Abelian or semisimple, or
products of such groups.

5Here is what we will need to know about groups and Lie algebras: The algebra can be
represented by generators La which satisfy [La, Lb] = i

∑
k c k

ab Lk, with c k
ab real numbers

known as the structure constants of the group. These give a bilinear Killing form β : G
× G → R given by β(Li, Lj) = −∑ab c b

ai c a
bj . As this is a real symmetric matrix, it

can be diagonalized. For compact, semisimple groups, all the eigenvalues are positive, the
Li’s can be scaled, so that βij = 2δij . Then the basis has be chosen such that

∑
k L2

k is a
casimir operator, commuting with each of the La’s, and it can be shown that the structure
constants are totally antisymmetric. This should be familiar for the rotation group, and is
explained in more detail in “Lightning review of group” and “Notes on Representations,
the Adjoint rep, the Killing form, and antisymmetry of c k

ij ”.
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For the kinetic energy term we need to replace a derivative by a finite differ-
ence. The simplest substitution is to replace

∂µφi(x) → 1

a

(
φi(~n+ ~∆µ)− φi(~n)

)
,

where ~∆µ is 1 in the µ direction and 0 in the others. Here the relation of xµ

and ~n is xν = anν + 1
2
aδν

µ, representing most accurately the x in the middle
of the two lattice points. If we expand out the squares of the differences,
we get terms which look just like the mass terms, but also nearest neighbor
couplings

∑
i φi(~n+ ~∆µ)φi(~n).

Each of these contributions to the action is still invariant under the trans-
formation (1), providing we use the same group transformation at every point
in space-time. This is called a global symmetry.

In a relativistic field theory, all information is local, because information
can only travel at the speed of light. So we might ask, if the theory is
unchanged by a group action at one point, why should that depend on having
the same transformation at every other point? In other words, could we have
a local symmetry, in which equation (1) holds with the group element varying
from one point of space-time to another? The mass terms and other terms
in V (φ) only depend on one point, so they don’t care whether M varies, and
they are invariant under such transformations. But the nearest-neighbor
coupling

∑
i

φi(~n+ ~∆µ)φi(~n) →Mik(G(~n+ ~∆µ))Mij(G(~n)) φk(~n + ~∆µ)φj(~n)

is not invariant because

M−1(G(~n+ ~∆µ))M(G(~n)) 6= 1

if the G’s (and hence the M ’s) vary from point to point.

2.2 Parallel Transport

The problem is that we have a term in the Lagrangian that is a function of
how φ changes from point to point, but we measure that change by how much
the components change. That is only correct if the basis for comparing the φ’s
does not change. We must have a way to measure change from point to point,
but before we can subtract one φ vector from another at a different point, we
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must “parallel transport” it to that new point. That is, for each link between
neighboring points, we must have a rule for parallel transporting φ fields from
one end of the link to the other. The change in the field φ =

∑
a φ

aêa as
we go from point A to point B is equal to ∆φ =

∑
a(φ

a
B − φa

A)êa only if we
can assume that the basis vectors don’t change, êA

a = êB
a . If we allow for the

possibility that the basis we have chosen at the point ~n + ~∆µ differs by a
group element G from that which corresponds to parallel transport from ~n,
we get a more elaborate definition of ∆φ.

As an example, it might help to think of
an ordinary vector in the plane, expressed
in polar coordinates. Consider the unit ba-
sis vectors ~er and ~eθ at the point P . If we
transport ~er to the point P ′ while keeping
it parallel to what it was, we arrive at the
vector labelled Ger, which is not the same
as the unit radial vector e′r at the point P ′.

Note that if we have a vector ~V ′ =
V ′

r~e
′
r +V

′
θ~e

′
θ at P ′ which is unchanged (par-

allel transported) from the vector ~V =
Vr~er +Vθ~eθ at P , we do not have V ′

r = Vr.

e
eθ

re’

rP

P’
G e

G

r

Now in our example we had an a priori rule for what parallel transport
means, but if we are to allow local gauge invariance, this rule becomes a
new degree of freedom. This dynamical variable is actually one element
of the symmetry group (and therefore perhaps several degrees of freedom,
1
2
N(N − 1) for SO(N), the orthogonal transformations in N dimensions),

for each point on the lattice and each direction we might parallel transport
φ. We can then build a theory with a local symmetry, but at the expense of
introducing a lot of new degrees of freedom.

The theory that emerges from these consideration is a gauge field the-
ory. Its degrees of freedom include not only the “matter fields” at each site
of the lattice, but also “gauge fields” on each link between nearest neighbors.
The matter fields live in a vector space which transforms linearly as a repre-
sentation6 of the “gauge group” G. The gauge fields live in the group itself,

6To a physicist, the vector space in which the matter fields live is called the representa-
tion, but what mathematicians call a representation consists of the matrices Mij , or more
accurately the mapping from elements of the group into matrices, G 7→ M(G). What we
call a representation they call a module.
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at least in the lattice field theory, but may alternately be considered to take
values in the Lie algebra of generators of the group, especially if we are to
take the continuum limit of the lattice.

2.3 Covariant Derivative

When a group element G acts on a vector ~V =
∑

i Viêi which transforms
under a representation M , the components of the new vector are multiplied
by the matrix:

G : ~V → ~V ′ =
∑
ij

Mij(G)Vj êi, so V ′
i =

∑
j

Mij(G)Vj.

So if G parallel transports ~φ(~n) from ~n to ~n + ~∆µ, and if we subtract this

from ~φ(~n+ ~∆µ) to get the change in φ, we have

∆φ =
∑

i


φi(~n + ~∆µ)−

∑
j

Mij(G)φj(~n)


 êi.

If the fields are slowly varying over the distance of one lattice spacing,
which is necessary if we are to consider the lattice an approximation to the
continuum, we can approximate

φi(~n+ ~∆µ) ≈ φi(~n) + a∂µφi.

We can also assume that the group transformation that parallel transports by
one lattice spacing is close to the identity, and that the Lie algebra element
which generates it should be proportional to the lattice spacing a. Thus
we may write G = eiagA, M(G) = M(eiagA) ≈ 1 + iagM(A), where A is
an element in the Lie algebra G of the gauge group G. [We have added a
parameter g which will turn out to be the fundamental charge, in order to
get conventionally defined A fields, although sometimes that is not done, and
the scale for measuring A is the natural one for the group.] Then we find, to
first order in the lattice spacing a,

∆φi = a


∂µφi − ig

∑
j

Mij(A)φj


 .

In the continuum limit, we define 1/a times this to be the covariant deriva-
tive, but first I must say a few words about the gauge field A. First, as there
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is a different value on each link, and in the continuum limit there are four7

links radiating from each point, we need to be defining four fields Aµ(x).
Also, each Aµ is not a single field, in general, but an element of the Lie
algebra, which is a vector space. The Lie algebra for the rotation group, for
example, is parameterized by a vector with three components, ~ω. Rotations
themselves are not a gauge group, but one possible gauge group to consider
is the SU(2) of the electro-weak theory, which is isomorphic8 to the rotation
group. One usually uses Li to represent a basis vector of the Lie algebra
vector space, so the gauge field can be expanded as

Aµ(x) =
∑

b

A(b)
µ (x)Lb.

This brings us to the definition of the covariant derivative:

(Dµφ)j = ∂µφj − ig
∑
kb

A(b)
µ Mjk(Lb)φk ; Dµφ = ∂µφ− igA(b)

µ M(Lb)φ,

where on the right we have written the expression with implied summations
on matrix and vector indices and implied multiplication.

2.4 Gauge Transformations

What does this have to do with local symmetry? We saw that the trans-
formation (1), where we let G vary with x, is a symmetry for the lattice
terms involving only a single site, but not for the kinetic term, (∂φ)2, which

involves cross terms such as
∑

i φi(~n + ~∆µ)φi(~n). These couple neighboring
points, and are not invariant. But with our improved definition of (∆φ), the
cross terms now have the form

φ(~n + ~∆µ) ·M(GL) · φ(~n),

where GL is the group transformation associated with the link (~n, ~n + ~∆µ)
that implements a parallel transport.

We can now ask what happens under the transformation in a different
way. If we think of the gauge transformation G(x) in the passive language

7Actually there are eight, as there are forward and backwards links in each direction.
But the “backwards” ones can be thought of as belonging to “previous” sites.

8Not exactly: the Lie algebra of SU(2) is the same as the Lie algebra of the three
dimensional rotation group SO(3), but the actual groups differ, as is discussed when
considering how spinors transform under rotations of 2π.
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as a change in the basis elements for the matter fields, we realize that they
will also effect the rule for doing parallel transport. If GL was the group
transformation on the basis which did a parallel transport from site p to site
q, with link L going from p to q, then after a change of basis by Gp at p
and one by Gq at q, the way to parallel transport the new basis at p must
be G′

L = GqGLG
−1
p . So we now define the gauge transformation Λ, which is

specified by a group element at each lattice site

Λ :



φ(xp) → M(Gp) · φ(xp)
φ(xq) →M(Gq) · φ(xq)

GL → GqGLG
−1
p

This gauge transformation is a local symmetry of the gauge field theory.
Let’s verify that this is an invariance of the nearest neighbor term:

φ(xq) ·M(GL) · φ(xp) = φi(xq)Mij(GL)φj(xp)

→ Mik(Gq)φk(xq)Mij(GqGLG
−1
p )Mj`(Gp)φ`(xp)

= φk(xq)M
−1
ki (Gq)Mij(GqGLG

−1
p )Mj`(Gp)φ`(xp)

= φk(xq)Mk`(GL)φ`(xp) = φ(xq) ·M(GL) · φ(xp),

where we have used the orthogonality of M(Gq) and the fact that the M ’s are
a representation, and therefore M−1

ki (Gq)Mij(GqGLG
−1
p )Mj`(Gp) = Mk`(GL).

In a continuum field theory, we consider only local gauge transformations
where the group element varies differentially in the continuum limit. We may
think of Λ as given by a Lie-algebra valued scalar field λ(x) =

∑
b λ

(b)(x)Lb.
Then the matter fields transform as

φ(x) → φ′(x) = ei
∑

b
λ(b)(x)M(Lb)φ(x),

while the gauge field itself transforms by

A(b)
µ (x) → A′ (b)

µ (x),

with

eiagA
′ (b)
µ (x) = e

iλ(x+
1

2
a∆µ)

eiagA
(b)
µ (x)Lbe

−iλ(x−1

2
a∆µ)

. (2)

We have placed x at the middle of the link. We now expand to first order in
the lattice spacing, remembering that λ(x) and ∂µλ(x) may not commute.
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So we will expand the exponential rather than λ. Approximating

eiagAµ → 1 + iagAµ,

eiλ(x± 1
2
a∆µ) → eiλ(x) ± 1

2
a∂µ

[
eiλ(x)

]
,

and plugging these into (2), we get

1 + iagA′
µ =

(
eiλ +

1

2
a∂µe

iλ
)

(1 + iagAµ)
(
e−iλ − 1

2
a∂µe

−iλ
)

= 1 + iageiλAµe
−iλ +

1

2
a
(
∂µe

iλ
)
e−iλ − 1

2
aeiλ

(
∂µe

−iλ
)

Note from ∂µ

(
eiλe−iλ

)
= 0 that the third and fourth terms are equal, so

we can drop the third and double the fourth, to get

A′
µ = eiλAµe

−iλ +
i

g
eiλ∂µe

−iλ

= eiλ

(
Aµ +

i

g
∂µ

)
e−iλ

Let us now ask how this is related to the gauge transformations we know
from Maxwell’s theory, which look less complicated. Electromagnetism is a
gauge field, but one with a very simple gauge group, that of rotations about a
single fixed axis9. The group consists of G = {eiθL1} and the Lie algebra has
only one generator, L1, and is therefore isomorphic to the real line R, and the
single structure constant c 1

11 is zero (a counterexample to assuming that the
Killing form can always be set to 2×1I). The rotations act on charged fields,
which are usually represented by complex fields Φ but in our treatment here
are represented by a doublet of real fields, (φ1, φ2) = ( Re Φ, Im Φ). The
transformation

φ→ φ′ =
(

Re Φ′

Im Φ′

)
=
(

cos θ − sin θ
sin θ cos θ

)(
Re Φ
Im Φ

)

gives Φ′ = eiθΦ, so the gauge transformations are local changes in phase of
the charged fields. The gauge transformations of fields themselves is vastly

9These are not rotations in real space, but in some abstract space of field configurations.
For QED that abstract space was represented by complex numbers, and the rotation is
simply multiplication by eiθ for a real phase θ.
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simplified by the fact that all the terms commute, so

A′
µ = eiλ

(
Aµ +

i

g
∂µ

)
e−iλ = Aµ + g−1∂µλ.

But this simplicity only holds for an Abelian group, one where all the gen-
erators commute, which is not enough when we wish to consider the gauge
theories of the electroweak and strong interactions.

2.5 Pure Gauge Terms in L
We now know how the kinetic terms for charged fields are modified by the
presence of an external gauge field, but we have not yet discussed the terms
which propagate the gauge fields themselves. We need these terms in the
Lagrangian to be invariant under gauge transformations.
In particular this means that they cannot depend only
on a single link, because we can always make a gauge
transformation G1 = Ga which resets the group element
for a single link to 1, so there would be no dependence

a1 2

2a G  G  Ga 1
−1

G

on the field. In fact, the simplest way to get
rid of the gauge dependance of Ga = eiagAx(xa)

on G2 = eiλ(x2) is to premultiply it by Gb,

GbGa → G3GbG
−1
2 G2GaG

−1
1 = G3GbGaG

−1
1 .

There is still a gauge dependence on the end-
points of the path, however, so the best thing
to do is close the path. To do so, we are tra-

1 2

3

a

b

a
G  G  G  G  G  G

b 3 b a

−1

1

versing some links backwards from the way
they were defined, but from that definition
in terms of parallel transport it is clear that
the group element associated with taking
a link backwards is the inverse of the ele-
ment taken going forwards. So the group

1 2

34 4 3

21a

b

c

d

a

b

c’

d’

element associated with the closed path on the right (which is called a plaque-
tte) is GP = G−1

d G−1
c GbGa, which transforms under gauge transformations

as

GP → G′
P =

(
G4GdG

−1
1

)−1 (
G3GcG

−1
4

)−1
G3GbG

−1
2 G2GaG

−1
1
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= G1G
−1
d G−1

4 G4G
−1
c G−1

3 G3GbG
−1
2 G2GaG

−1
1

= G1G
−1
d G−1

c GbGaG
−1
1

= G1GPG
−1
1 .

So the plaquette group element is not invariant but it does have a simpler
and more restricted variation. In the continuum limit we expect each link’s
group element to be near the identity and also to have Gc differ from Ga by
something proportional to the lattice spacing, so GP should be close to the
identity, the difference considered a generator in the Lie algebra. The Killing
form acting on that generator will provide us with an invariant. Let us define
Fµν = −ia−2g−1(GP − 1) to be the field-strength tensor, where µ and ν are
the directions of links a and b respectively. Let us take x in the center of the
placquette. Expanding each link to order O(a2)

Ga ≈ 1 + iagAµ(x− 1

2
a∆ν)− 1

2
a2g2A2

µ(x−
1

2
a∆ν)

≈ 1 + iagAµ(x)− 1

2
ia2g∂νAµ(x)− 1

2
a2g2A2

µ(x)

G−1
c ≈ 1− iagAµ(x +

1

2
a∆ν)− 1

2
a2g2A2

µ(x +
1

2
a∆ν)

≈ 1− iagAµ(x)− 1

2
ia2g∂νAµ(x)− 1

2
a2g2A2

µ(x),

a 21

c

d

4 3

b

µ

νx

we have, to second order10 in a,

GP =
(
1− iagAν(x) +

1

2
ia2g∂µAν(x)− 1

2
a2g2A2

ν(x)
)

(
1− iagAµ(x)− 1

2
ia2g∂νAµ(x)− 1

2
a2g2A2

µ(x)
)

(
1 + iagAν(x) +

1

2
ia2g∂µAν(x)− 1

2
a2g2A2

ν(x)
)

(
1 + iagAµ(x)− 1

2
ia2g∂νAµ(x)− 1

2
a2g2A2

µ(x)
)

= 1 + a2g {g [Aµ(x),Aν(x)] + i∂µAν(x)− i∂νAµ(x)}
Thus

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− ig [Aµ(x),Aν(x)] .

10Note that the terms in A2
µ(x) cancel, and only the commutator, not the product, of

La’s is left.
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Note that Fµν is

• a Lie-algebra valued field, Fµν(x) =
∑

b F
(b)
µν (x)Lb.

• An antisymmetric tensor, Fµν(x) = −Fνµ(x).

• Because the Lie algebra is defined in terms of the structure constants,
c d
ab by

[La, Lb] = ic d
ab Ld,

the field-strength tensor may also be written

F (d)
µν = ∂µA

(d)
ν − ∂νA

(d)
µ + gc d

ab A
(a)
µ A(b)

ν .

Before we turn to the Lagrangian, let me point out a crucial relation-
ship between the covariant derivatives and the field-strength. If we take the
commutator of covariant derivatives

Dµ = ∂µ − igA(b)
µ Lb

at the same point but in different directions,

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν] = −ig∂µAν − g2AµAν − (µ↔ ν)

= −g2 [Aµ,Aν]− ig∂µAν + ig∂νAµ

= −igFµν .

Notice that although the covariant derivative is in part a differential operator,
the commutator has neither first or second derivatives left over to act on
whatever appears to the right. It does need to be interpreted, however, as
specifying a representation matrix that will act on whatever is to the right.

Now consider adding to the Lagrangian a term proportional to the Killing
form evaluated on F , twice, β(Fµν,Fµν) = 2

∑
b F

(b)
µν F

(b) µν . I have assumed
the generators La have been normalized so that the Killing form β(La, Lb) =
2δab, and the stucture constants are totally antisymmetric11. We know that
under a gauge transformation Fµν → eiλFµνe

−iλ. If λ is infinitesimal, Fµν →
Fµν + i[λ,Fµν ] =

{
F (d)

µν − λ(a)F (b)
µν c

d
ab

}
Ld, so

δβ(Fµν,Fµν) = 2β(δFµν,Fµν) = 2× (−2)λ(a)F (b)
µν c

d
ab F

(d) µν = 0

11See groups.pdf and adjnote.pdf in the Supplementary Notes section of the Lecture
Notes page of the course website.
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where the expression vanishes because c d
ab is antisymmetric under inter-

change of b and d but F (b)
µν F

(d) µν is symmetric under the same interchange
(and we are summing on b and d). As β(Fµν ,Fµν) doesn’t change to first
order under infinitesimal transformations, it also doesn’t change under the
finite transformations they generate.

2.6 Lagrangian for the Gauge Fields

We choose the normalization of the A fields so that the pure gauge term in
the Lagrangian density is −1

4
F (b)

µν F
(b) µν . Suppose we also have Dirac matter

fields transforming under a representation tbij = Mij(Lb) of the group, and
perhaps some scalar fields as well, transforming under a (possibly) different
representation t̄bij = M̄ij(Lb), where the bars here only represent a different
representation, not any kind of conjugation. The gauge fields come into the
matter terms in the Lagrangian because, in order to maintain local gauge
invariance, all derivatives need to be replaced by covariant derivatives. Thus
the potential terms for matter fields in L will not be involved in the equations
of motion of the gauge fields, and we need only look at

L = −1

4
F (b)

µν F
(b) µν + iψ̄γµ

(
∂µ − igA(b)

µ tb
)
ψ

+
1

2

[(
∂µ − igA(b)

µ t̄b
)
φ
]T [(

∂µ − igA(b) µt̄b
)
φ
]
.

The theory we have just defined, the gauge theory based on a non-Abelian
Lie group, is known as Yang-Mills theory.


