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1 Electromagnetic Interactions

In this course we are dealing with electromagnetic fields and charged parti-
cles, which, of course, interact with each other as specified by Maxwell’s laws
and the Lorentz force equation. We first discussed the dynamics of electro-
magnetic fields with certain boundary conditions representing the simplified
effect of charges, for example with ideally conducting wave guides or lin-
ear dielectric materials. We also considered the fields produced by specified
particle motions. Inversely, we considered the charged particle motions is
specified external fields. We are able to get quite good descriptions of many
important contexts using this simplified approach, though in principle we
should be considering how interactions of the fields and particles act on each
other on a continuous basis. When external fields cause particles to acceler-
ate, they produce additional fields, which of course changes the motion of the
particles. As an example, consider a charged particle moving in a magneto-
static field. We say that the kinetic energy is conserved because the Lorentz
force of a magnetic field is perpendicular to the velocity, but if the particle
is accelerated it must be radiating, and then the energy of radiation must
be coming from the kinetic energy of the particle, and it must, in fact, be
slowing down.

The reason that we were able to get so many useful results in many
contexts by considering the interactions to go in only one direction is that
often the back-reaction is small. For example, for a nonrelativistic particle
we saw that the power radiated is P = 2e2a2/3c3. If we examine the motion
over a time interval T for which the acceleration remains roughly in the same
direction, the energy radiated is Erad ≈ 2e2a2T/3c3 while the velocity will
change by ≈ aT with a kinetic energy comparable to E0 = 1

2
mv2 ∼ m(aT )2,

so radiative effects will be small if

2e2a2T

3c3
� ma2T 2 =⇒ T � τ :=

2e2

3mc3

(
e2

6πε0mc3
in SI units

)
.
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The characteristic time for an electron is

τ =
2e2

3mec3
= 6.26× 10−24 s, cτ = 1.88 femtometers,

so for macroscopic phenomena this is pretty much okay. Of course if the
particle would have been in periodic motion without the radiation, and if we
wait long enough, the radiated energy will degrade the orbit, but in any one
period the radiated energy is roughly

Erad ∼
2e2

c3
ω4r22π

ω
compared to E0 ∼ mω2r2,

so the radiated power has only an adiabatic effect provided ωτ � 1.

2 Radiative Reaction

Of course over a long time the adiabatic effect will be significant, so it would
be good to have a description of a nonrelativistic particle’s motion which
includes the back reaction in an average sense. If we had no radiation the
particle would obey Newton: m~̇v = ~Fext, but it would also radiate power at
a rate P (t) = 2e2(~̇v)2/3c3, and therefore it would feel a damping force ~Frad
which does negative work on it:

−
∫ t2

t1
P (t) dt =

∫ t2

t1

~Frad~v(t) dt = −2e2

3c3

∫ t2

t1
~̇v·~̇v dt =

2e2

3c3

∫ t2

t1
~̈v ·~v dt− 2e2

3c3
~̇v · ~v

∣∣∣∣∣
t2

t1

.

If we have an excuse for throwing away the endpoint terms, say because the
particle is in quasi-periodic motion or that we can pick times t1 and t2 for
which ~̇v · ~v = 0, we can say that the radiative damping force is

~Frad =
2e2

3c3
~̈v = mτ~̈v .

This gives an equation of motion, known as the Abraham-Lorentz equation,
which involves second order time derivatives of ~v, which is to say third order
derivatives of position, that is, the jerk, which violates the usual rules for
writing down laws of motion. And for good reason, because the additional
solution which the extra order of derivative provides allows for a particle
with no external forces to take off by itself, x(t) = x0e

t/τ , with the particle
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speeding up indefinitely without any external source of energy! On the other
hand, if we have solutions which are small perturbations on the equation
without the damping force, we can use these to describe the motion.

This suggests using the undamped equation to evaluate the radiation
damping term, ~Frad = τdFext/dt

m~̇v = Fext + τ

[
∂Fext

∂t
+
(
~v · ~∇

)
Fext(~x, t)

]
. (1)

Consider a particle in a central force field with potential U(r), which in
the absence of radiative damping would have a conserved energy E and a

conserved angular momentum ~L, a force ~Fext = −dU

dr

~r

r
and an acceleration

~̇v = − 1
m

~r
r

dU
dr

. The particle will lose energy at a rate P (t), of course, so

dE

dt
= −2e2

3c3
(~̇v)2 = − 2e2

3m2c3

(
dU

dr

)2

= − τ

m

(
dU

dr

)2

.

The rate of change of the angular momentum is

d~L

dt
= ~r ×m~̇v = ~r ×

[
−~r

r

dU

dr
− τ(~v · ~∇)

(
~r

r

dU

dr

)]
.

The first term contains ~r × ~r and vanishes. So does the term where the
gradient acts on dU/dr, as that also contains ~r × ~r. Using ~v · ~∇êr = ~v/r −
~r(~r · ~v)/r2, we find

d~L

dt
= −τ~r ×

(
~v

r
− ~r

~r · ~v
r2

)
dU

dr
=
−τ

m
~L

1

r

dU

dr
.

As we expect that the damping terms have a small effect over one almost-
closed orbit, we can consider the averages over an orbit,

〈
dE

dt

〉
= − τ

m

〈(
dU

dr

)2〉
,

〈
d~L

dt

〉
= − τ

m
~L

〈
1

r

dU

dr

〉
.

In general the orbit of the motion in the spherical potential, ignoring the
radiation damping, is determined by E and ~L, up to a rotation, so the values
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of
〈(

dU
dr

)2
〉

and
〈

1
r

dU
dr

〉
can be evaluated as functions of E and L, giving a

pair of ordinary differential equations which determine how the orbit decays
with time. The classical calculation of what would happen classically to an
electron in a Bohr orbit in hydrogen is informative: according to Problem
16.2, the electron in the ground state should spiral into the nucleus after a
time

t =
a3

0

9c3τ 2
= 15 picoseconds!

Of course quantum mechanics prevents this from happening. The classical
calculation can, however, give reasonable results if you ask for the decay time
for a decay `→ `−1 for large values of `, according to Bohr’s correspondence
principle, as you considered for homework.

3 Line Width

To work a simpler example, consider a charge on a one-dimensional harmonic
oscillator with a force constant k = mω2

0, that is, Fext = −mω2
0x. Assuming

ω0τ � 1, we can use (1), so we have

mv̇ = −mω2
0(x + τv) → mẍ + mω2

0τ ẋ + mω2
0x = 0.

This linear ODE with constant coefficients has two solutions x(t) = x0e
−αt

with α2 − τω2
0α + ω2

0 = 0, or

α =
1

2
τω2

0 ± iω0

√
1− (τω0/2)2 ≈ 1

2
τω2

0 ± i(ω0 − τ 2ω3
0/8).

The real part of this is the decay constant Γ/2, while the imaginary part is
the angular frequency, slightly shifted by the damping,

ω = ω0 + ∆ω, with ∆ω = −τ 2ω3
0/8.

Thus if the oscillator is set going at time zero, it will emit radiation pro-
portional to (ẍ(t))2, which will not have a pure frequency, but rather the
distribution of frequencies of the amplitude of emitted radiation is

E(ω) ∝
∫ ∞

0
e−αteiωtdt =

1

α− iω
,
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whose absolute square give the power spectrum

dI(ω)

dω
= A

1

(Γ/2)2 + (ω − ω0 −∆ω)2
,

which is called the “resonant line shape” or Lorentzian. The total energy
radiated is

I0 = A
∫ ∞

0
dω

1

(Γ/2)2 + (ω − ω0 −∆ω)2

=
2A

Γ

[
π

2
+ tan−1

(
2(ω0 + ∆ω)

Γ

)]
→ 2πA

Γ

where the last expression assumed Γ� ω0 as ω0τ � 1.
In terms of wavelengths, the classical line width is

∆λ = Γ|dλ/dω| = 2πcΓ/ω2
0 = 2πcτ = 1.18× 10−14 m.

Quantum mechanically there are oscillator strength factors, but the order
of magnitude is correct, so Γ/ω0 ∼ 10−8 for optical transitions in atoms,
justifying our assumption that ω0τ � 1.

Jackson points out that the level shift, classically proportional to ω3
0τ

2 is
not correct quantum mechanically.

4 Scattering by an Oscillator

We have just seen how a charged oscillator radiates away its energy, so now
let’s turn to how it scatters light. We already considered a free charged
particle, with Thomson scattering. Let us assume now the electron is bound
by a spherically symmetric spring with spring constant mω2

0 as before. In the
presence of an incoming electric field, the force on it (assuming it remains

non-relativistic) is ~Fext = −mω2
0~x + e~εE0e

i~k·~x−iωt. From (1) we have

m~̇v = −mω2
0~x + e~εE0e

i~k·~x−iωt − τmω2
0~̇x− iω

(
τ − ~v · ~k

)
e~εE0e

i~k·~x−iωt.

We are dropping terms proportional to ~vE0 (we didn’t consider the magnetic
field either) so we have

~̈x + Γt~̇x + ω2
0~x =

eE0

m
~ε(1− iωτ)ei~k·~x−iωt,
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where Γ should be τω2
0, but we will throw in an additional unspecified damp-

ing Γ′ due to “other dissipative processes”, which will be left to a course in
quantum atomic physics. So Γt = τω2

0 +Γ′. Here we are looking for a steady
state solution to this inhomogeneous linear equation, rather than the decay
of the homogeneous one, and it is

~x(t) =
eE0

m
~ε

(1− iωτ)e−iωt

ω2
0 − ω2 − iωΓt

.

Larmor tells us the power into dΩ with polarization ~ε ′ is

dP

dΩ
=

1

2

e2

4πc3

∣∣∣~ε ′ · (n̂× (n̂× ~̈x)
)∣∣∣2 =

e2

8πc3

∣∣∣~ε ′ · ~̈x∣∣∣2

=
e2

8πc3

(
eE0

m

)2
∣∣∣∣∣ (1− iωτ)ω2

ω2
0 − ω2 − iωΓt

∣∣∣∣∣
2

|~ε ′ · ~ε|2 .

Dividing by the incoming flux density cE2
0/8π, we get the cross section

dσ

dΩ
=

e4

m2c4

(1 + ω2τ 2)ω4

(ω2
0 − ω2)2 + ω2Γ2

t

|~ε ′ · ~ε|2 .

We can drop the ω2τ 2 compared to 1. To calculate the total cross section,
as for the Thomson cross section, we have |~ε ′ · ~ε|2 → 8π/3, so

σT =
8π

3

e4

m2c4

ω4

(ω2
0 − ω2)2 + ω2Γ2

t

.

Writing this in terms of the radiation damping width Γ = ω2
0τ = 2e2ω2

0/3mc3

and the resonant wavelength λ := 2πc/ω0,

σT =
3

2π
λ2 ω4Γ2/ω2

0

(ω2
0 − ω2)2 + ω2Γ2

t

.

At low frequencies we have ω4 behavior, as predicted by Rayleigh’s law , and

at high frequencies σT → 6π(cτ)2 = 8π
3

(
e2

mc2

)2
, the Thomson cross section.

This makes sense, in that if the incoming frequency is much higher than the
resonant frequency, the electron doesn’t realize it is not free. The strong
peak at the resonant frequency ω = ω0 is called resonance fluorescence.


