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1 Bremsstrahlung

We have seen that whenever charged particles are accelerated, radiation will
be produced. For elementary particles this effect was first observed when
high-energy electrons entered material and quickly lost their energy, which
was therefore called braking radiation (in german). For relativistic particles
this can be an appreciable deposition of the energy when a particle enters
material, in addition to the energy transferred to the particles on which the
scattering takes place. Experimentalists use this to measure the energy of
electrons, as the radiation produced (as photons) often pair-produce, so the
measurement of all the energy of charged particles produced measures that
of the original electron.

Another place where understanding bremsstrahlung is important is at the
opposite end of the energy spectrum, where we consider low frequency radi-
ation. The process of scattering occurs on an atomic or subatomic scale, and
therefore over a very short time interval, so the details of the scattering should
be irrelevant when discussing frequencies corresponding to wavelengths larger
than an angstrom. Thus in the equation we derived last time,

A(ω) =

√
q2

8π2c
eiωR/c

∫ ∞

−∞
eiω(t−n̂·~r(t)/c) d

dt


 n̂× (n̂× ~β)

1− n̂ · ~β


 dt. (1)

we can assume that the d[ ]/dt factor contributes over such a small range
of t values that the phase iω(t − n̂ · ~r(t)/c can be taken to be an irrelevant
constant phase, and therefore we have an integral of a total derivative, given
by the difference of its final and initial values. Projecting the contribution
of a single polarization ~ε, which is perpendicular to n̂, we have
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=
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4π2c
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 ~βf

1− n̂ · ~βf

−
~βi

1− n̂ · ~βi



∣∣∣∣∣∣
2

.

This formula has a disturbing feature with difficulties at both ends of the
frequency spectrum, as it is independent of frequency. This is problematic
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at the high frequency end because it seems to say that integrating over all
frequencies, the total power into any solid angle is infinite. This is not a
serious problem, however, because for high frequency our approximation that
the acceleration occurs in a time interval small compared to 1/ω is unphysical,
and we expect there to be modifications at that end. At the other end,
however, our approximation is valid. There is no divergence in the energy
radiated, but the quantum-mechanical interpretation is a problem. Quantum
mechanically, radiation consists of photons, each of energy h̄ω, and if we get
a classical prediction that we should have an energy deposit of ∆E in a small
range of frequencies near ω, we need to interpret that quantum-mechanically
that we have an expected number of photons ∆E/h̄ω in that range. But we
are predicting energy/unit frequency to be constant and nonzero down to zero
frequency, so the expected number of photons per energy range diverges as
ω → 0. Usually in quantum physics we ask for the probability that, starting
from some initial state, we wind up in a given final state, and here we are
finding that the probability that an electron scatters from a nucleus, for
example, without any additional particles in the final state, is zero. This
is known as infrared divergence, and in quantum field theory we need to
take into account that any experimental arrangement has a lowest energy
cutoff δE, below which a photon could not have been detected, so when
we measure the cross section for elastic scattering ~βi → ~βf , we are actually
including processes for which an arbitrary number of very soft photons, with
total energy totaling less than δE. It turns out the cross section for this is
finite and calculable.

Beyond those difficulties, the most noticeable feature of bremsstrahlung
radiation for ultrarelativistic particles is the strong peaking in the directions
of the final particle and the initial particle. We can think of these as parts of
the Coulomb field that have travelled on without noticing that the particle
got bumped. In quantum field theory, what is relevant is that the state of the
charged particle, of mass m with momentum pα, together with the photon
of momentum kα, has a mass

M2 =
1

c2
(pα + kα)2 = m2 +

2

c2
pαkα = m2 + 2

m|k|
c

γ(1− n̂ · ~β)

≈ m2 +
m|k|
γc

(1 + γ2θ2),

which goes to m2 (goes on-shell in QFT language) as β → 1 and the angle
θ between the photon and the charged particle goes to zero. Thus in some



504: Lecture 23 Last Latexed: April 22, 2010 at 14:08 3

ways it acts as if this combination were the single charged particle.

2 Bremsstrahlung in Beta Decay

Beta decay is a weak interaction process in which a neutron or proton in a
nucleus emits an electron or positron and an antineutrino or neutrino, turning
into a proton or neutron respectively, and thereby changing the charge of the
nucleus by one unit

Z → (Z ± 1) + e∓ + ν.

While the electron or positron was created, and not previously residing in
the nucleus, its charge was there, so as far as the electromagnetic field is
concerned, we have a charge at rest until the sudden decay, and then a
pretty-much instantaneous acceleration to a large final velocity. Assuming
the decay takes place at t = 0, we have

d2I

dωdΩ
=

e2

4π2c

∣∣∣∣∣∣
~ε ∗ · ~β

1− n̂ · ~β

∣∣∣∣∣∣
2

,

where c~β is the final velocity of the e±, and we are assuming ω is small
enough. Small enough might mean compared to the scale of the nucleus or
nucleon size, as we might imagine the acceleration occurs on this distance
scale, but more obviously, if we take into account the fact that any radiation
will be quantized in units of h̄ω, we must have h̄ω < (mZ −mZ±1 −me)c

2.

The radiation in the n̂ direction is polar-
ized, as the component perpendicular to
the plane containing n̂ and ~β is not ex-
cited (by ~ε ∗ · ~β). Then, as we see in the
diagram, for the direction that is excited,
~ε ∗ · ~β = β sin θ, and

d2I

dωdΩ
=

e2

4π2c
β2 sin2 θ(

1− n̂ · ~β
)2 .

Integrating over all angles,
∫

dΩ =∫
sin θdθdφ = 2π

∫ 1
−1 du, we have

n

β
ε

θ

α
π
2α =    − θ
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dI

dω
=
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4π2c
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(1− βu)2
du =
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2πβc
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1−β
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x2
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=
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πc
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1

β
ln

1 + β

1− β
− 2

]

The predicted intensity distribution has no ω dependence, but we have
already discussed that there is a cutoff ωmax. The energy per frequency
value is not large. For small β the term in brackets is 2β2/3, and we have
dI/dω = 2e2β2/3πc. Let’s compare the energy radiated to the lost rest mass
energy ∆E which gives the upper limit ωmax = ∆E/h̄. Multiplying dI/dω by
the cutoff frequency we see that the fraction of energy lost going into radiation
is less than 2e2β2/3πh̄c. As the fine structure constant α = e2/h̄c ≈ 1/137,
we see this is well less than 1%. As for bremsstrahlung in scattering, the low
frequency limit predicts an infinity at zero frequency in the number spectrum
for photons emitted, though the total energy emitted is small.

There is some interest in this lost energy, though it is often ignored,
because one way to try to measure neutrino masses is to look for a cutoff
in the energy spectrum of the electrons. The energy difference between the
parent and daughter nucleus is shared between the electron, the neutrino, and
any photons which accompany them. If the neutrino has a mass, there is a
lower limit on the energy it can have, and thus an upper limit on the electron
energy distribution which is slightly less than (mZ −mZ±1)c

2. The expected
energy distribution from quantum mechanics, ignoring photon production,
might be misleading, however, if inner bremsstrahlung photons are taking off
some of the energy.

3 Orbital Electron Capture

From an elementary particle point of view another process which is basically
the same, or the inverse of, beta decay, is electron capture. Here a nucleus
of charge Ze grabs one of the atomic electrons, converting a proton into a
neutron, and emits a neutrino, Z + e− → (Z − 1) + ν.

Let us first give a classical model for electron capture, and then discuss
how to interpret this quantum mechanically. Our classical model has a non-
relativistic electron moving in a circle of radius a about the z axis with
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angular frequency ω0, up until time t = 0, at which point it disappears. So
for negative t the position and velocity are

~r(t) = a cos(ω0t + α)êx + a sin(ω0t + α)êy,

~v(t) = −ω0a sin(ω0t + α)êx + ω0a cos(ω0t + α)êy.

Let’s look at this from a point in the xz plane at an angle θ from the z axis,
so n̂ = sin θêx + cos θêz . The frequency spectrum is best evaluated by doing
the integration by parts in Eq. 1,

A(ω) = −
√

q2

8π2c
eiωR/c

∫ ∞

−∞
n̂× (n̂× ~β)

1− n̂ · ~β
d

dt

[
eiω(t−n̂·~r(t)/c)

]
dt

= −iω

√
q2

8π2c
eiωR/c

∫ 0

−∞
n̂× (n̂× ~β)eiωtdt,

where we have assumed the ωn̂ ·~r(t) < aω is negligible, and so is the ~β · n̂. We
need n̂× (n̂×~v) which is found from n̂×~v = vx cos θê⊥ + vy ê‖, n̂× (n̂×~v) =
−vx cos θê‖ + vy ê⊥, The integrals are given in terms of

I1 =
∫ 0

−∞
cos(ω0t + α)eiωt =

−iω cos α− ω0 sin α

ω2 − ω2
0

I2 =
∫ 0

−∞
sin(ω0t + α)eiωt =

ω0 cos α− iω sin α

ω2 − ω2
0

Thus

d2I

dωdΩ
=

e2ω2ω2
0a

2

4π2c3

∣∣∣(I2 cos θ + I1)
2 + (I1 − I2 cos θ)2

∣∣∣
=

e2ω2ω2
0a

2

4π2c3(ω2 − ω2
0)

2

(
ω2 cos2 α + ω2

0 cos2 α + cos2 θ(ω2
0 cos2 α + ω2 cos2 α)

)

The position in the circle at the moment of absorbtion is random, so we
average over the value of α, to get

d2I

dωdΩ
=

e2ω2ω2
0a

2

4π2c3(ω2 − ω2
0)

2

(ω2 + ω2
0) (1 + cos2 θ)

2

If we don’t know in which direction the electron was rotating we should
average over angles, or if we want the total power radiated per frequency
range, we should integrate:

dI

dω
=
∫

dΩ
d2I

dωdΩ
=

2e2

3πc

(
ω0a

c

)2 ω2 (ω2 + ω2
0)

(ω2 − ω2
0)

2
.
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The quantum mechanical interpretation of this classical model is not com-
pletely clear to me. Electron capture requires the electron to be within the
nucleus, which is very small compared to atomic orbitals, even in heavy atoms
for which the radius is the Bohr radius a0 divided by Z. Only s wave func-
tions have a nonzero amplitude to be at r = 0, so it is an s orbital, usually
in the K shell (n = 1, ` = 0) that is captured, and the circular orbit is not a
good description of the spherically symmetric s orbital wave function. On the
other hand, very soon after the nucleus gobbles up the innermost electron,
an electron in the 2p orbital will make a transition into the newly emptied
1s state, so probably that is what we are describing. The energy emission of
a 2p → 1s transition is approximately 3Z2e2/8a0 which is the best thing to
use for h̄ω0 in our classical approximation. Here a0 = h̄2/me2 = 53 pm is the
Bohr radius. The 2p radius is roughly a = a0/Z. Thus the expected number
of photons emitted per energy is

N(h̄ω) =
dI(ω)

h̄dω

/
h̄ω ≈ 3

32π
Z2

(
e2

h̄c

)3
1

h̄ω

[
ω2(ω2 + ω2

0)

(ω2 − ω2
0)

2

]
.

At high ω the energy distribution goes to a constant, as we have seen for
other bremsstrahlung processes with the instantaneous transition approxima-
tion, and again we remind ourselves that there is a cutoff in the applicability
of our instantaneous change approximation. There is no infrared problem
here. The dominant feature is the resonance peak at ω = ω0, which is not
really infinite as we have it. As we know, the classical picture of a periodic
orbit lasting forever would radiate at a constant rate, or infinitely much in
infinite time, but quantum mechanics prevents such decays as long as there
is no lower-energy state for the electron to fall into. The spread of this peak
is due to the finite time it takes, on average, for the transition to take place.

There is also a contribution from the magnetic dipole moment of the
electron, but I leave that to Jackson.


