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1 Cherenkov Radiation

Before we turn to Cherenkov radiation, let’s note that there is an alternate
method of measuring the energy leaving the track to distances larger than
the cutoff b, and that is to measure the flow of
energy out of a cylinder of radius b. The en-
ergy flux through this cylinder is given by the
outward component of the Poynting vector,
~S = c ~E× ~B/4π. As we saw by considering ~E

at (0, b, 0), there is no component of ~E par-
allel to the surface perpendicular to ~v, so the
outward flux S2 = −cE1B3/4π. Thus

x

y S
b

∂E

∂t
=

c

4π
2πb

∫ ∞

−∞
dxE1(x, b, 0, t)B3(x, b, 0, t).

The fields at any x vary with time as the particle passes, but the situation is
invariant under t → t + τ , x → x + vτ . Integrating over all x at an instant
is equivalent to integrating at one point in x over all time, with dx → v dt.
Also the rate of loss in x is just 1/v times the rate of loss in t, so

∂E

∂x
= (1/v)

∂E

∂t
=

c

4π
2πb

∫ ∞

−∞
dtE1(0, b, 0, t)B3(0, b, 0, t)

= cb Re
∫ ∞

0
dωB∗

3(ω)E1(ω)

where the fields are evaluated at (0, b, 0). From last time we have

E1(ω) = −i
√

2

π

zeω

v2

(
1

ε(ω)
− β2

)
K0(λb).

We also saw the source for ~A is ~J , so it has only an x component, so
B3(~k, ω) = −ik2A1 = −iε(ω)k2(v/c)Φ(~k, ω) = ε(ω)(v/c)E2(~k, ω), so using
the result for E2 from last time,

B3(~x = (0, b, 0), ω) =

√
2

π

zeλ

c
K1(λb)
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we have(
dE

dx

)
= bc Re

∫ ∞

0
dω E1(ω)B∗

3(ω)

=
2

π

z2e2

v2
Re

∫ ∞

0
dω (iωλ∗b)K1(λ

∗b)K0(λb)

(
1

ε(ω)
− β2

)
.

This result is due to Fermi.

2 Cherenkov Radiation

If, instead of concentrating on the energy lost past an atomic-sized cylinder by
the incident particle, we ask about the energy radiated out to a macroscopic
distance a, we have λa >> 1, and we may use the asymptotic forms of the
modified Bessel functions Kν(z) =

√
π
2z
e−z, so

(
dE

dx

)
=

2

π

z2e2

v2
Re

∫ ∞

0
dω

iωλ∗a√
λλ∗

π

2a

(
1

ε(ω)
− β2

)
e−2 Re λa.

The expression for λ comes from the appearence in the integrals over ~k of

λ2 =
ω2

v2

(
1− β2ε(ω)

)
,

which is surely meant to be mostly positive and have a positive square root
for low velocities or as ω → ∞, where ε(ω) → 1. Thus the energy flux
reaching a large distance a vanishes exponentially as long as λ maintains
its real part, which it will do as long as β2 Re ε < 1. λ does have a small
negative imaginary part, however, because
for real ω, ε(ω) has a positive imaginary
part. If there is a region of real ω for which
β2 Re ε(ω) > 1, in that region λ will be
imaginary with a negative imaginary part,
and the dependence on a disappears, so

λ λ

Re ε

v c

>1

2

0 0

that the energy is escaping to infinity. For λ rotating from positive to negative

imaginary,
√
λ∗/λ→ i, and for macroscopic a

(
dE

dx

)
=
z2e2

c2
Re

∫
β2ε(ω)>1

dω ω

(
1− 1

β2ε(ω)

)
.
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As there is no dimunition of the energy as b grows, we must be in the
radiation region, where locally we have a wave moving in the ~E× ~B direction.
As ~A ‖ ~v, ~B field is purely azimuthal, in the z direction at ~x = (0, b, 0), so
the angle θC = tan−1(dy/dx) of the emitted light has tan θC = −E1/E2. In
evaluating

E1 = i
zeω

c2

[
1− 1

β2ε(ω)

]
e−λb

√
λb

we note that as λ2 := ω2(1−β2ε(ω)/v2, the term in brackets is−v2λ2/ω2β2ε(ω) =
−c2λ2/ω2ε(ω). We also have

E2 =
ze

vε(ω)

√
λ

b
e−λb

so

tan θC = −E1

E2

= −iωε(ω)v

c2
−c2λ2

ω2ε(ω)λ
= i

λv

ω
=
√
β2ε(ω)− 1,

where we have made use of the fact that λ = −i|λ| in the range of ω which
radiates. But then

cos θC =
1√

1 + tan2 θC

=
1

β
√
ε(ω)

=
1

βn(ω)
.

We have needed an elaborate cal-
culation to find the amplitude of
the radiation, but the angle can
be derived by freshmen, by con-
sidering the wavefront composed
of spherical wavelets emitted at
various times, each propagating
outward with velocity c/n =
c/
√
ε. Simple geometry shows

that cos θC is the ratio of this
speed to the speed with which
the particle moves through the
medium.

θ
C

cos     = 
ct/n
vt

= 1
βn

ct
/n

θC

vt

Note that the radiation is 100% polarized because the ~E field is in the
plane including the charged particle’s trajectory, while ~B is normal to that
plane.
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2.1 Hard Scattering

Last time when we began talking about what happens to a fast particle in
media, we mentioned that two effects, the loss of energy and the scattering
(change in direction) are largely due to different causes and can be treated
separately. We then focussed on energy loss, due to scattering off electrons,
either individual ones or those giving rise to the dielectric constant of the
medium. As we mentioned, changes in direction of the particle come pri-
marily from scattering off something as heavy or heavier, for example the
nuclei of atoms, for a meson or baryon projectile. This scattering is also
primarily due to Rutherford scattering, but this time the lab is nearly the
center of mass frame, and the angle is primarily the angle of scattering of
the projectile.

The cross section is highly dominated by small angles, so we can write

dσ

dΩ
=

(
2zZe2

pv

)2
1

θ4

for a nucleus of charge Ze, where p and v are the momentum and speed
of the projectile. This formula has two limits of applicability. Integrating
over dΩ = 2π sin θ dθ gives infinity, while there ought to be essentially no
scattering for impact parameters much greater than the size of the electron
shells. That is, we considered the unscreened potential of the nucleus, but
this electric field is completely screened out by the electrons if the projectile is
further than the atomic size from the nucleus. A phenomenological treatment
is to take

dσ

dΩ
=

(
2zZe2

pv

)2
1

(θ2 + θ2
min)2

.

θmin is not really a minimum scattering angle — there is still significant
scattering down to θ = 0. Rather, it is a parameter about which Jackson
provides several suitable choices, all roughly such that the total cross section
will be the cross section of the atom. That is,

σ = 2π

(
2zZe2

pv

)2 ∫ π

0

sin θ

(θ2 + θ2
min)2

dθ ≈ 2π

(
2zZe2

pv

)2 ∫ ∞

0

θ dθ

(θ2 + θ2
min)2

= π

(
2zZe2

pv

)2 ∫ ∞

0

du

(u+ θ2
min)2

=

(
2zZe2

pv

)2
π

θ2
min

.
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If a is the rough radius of the electron shell, and we set σ = πa2,we have

θmin =
2zZe2

pva
.

There is also, of course, a largest angle θmax. Not only is θ ≤ π, but
there is a cutoff that comes from the projectile penetrating the finite-sized
nucleus.

The projectile will undergo a large number of scatterings through small
angles. The mean change in direction will be zero, of course, but

〈θ2〉 =

∫
θ2 sin θ(dσ/dΩ) dθ∫
sin θ(dσ/dΩ)dθ

≈
∫ θmax
0 θ3dθ/(θ2 + θ2

min)2∫ θmax
0 θdθ/(θ2 + θ2

min)2

=

∫ θ2max
0 du u/(u+ θ2

min)2

∫ θ2max
0 du/(u+ θ2

min)2

=
ln(u+ θ2

min)
∣∣∣θ2max
0

+ θ2
min/(θ

2
max + θ2

min)− 1]

1/θ2
min − 1/(θ2max + θ2

min)
≈ 2θ2

min ln
θmax
θmin

.

The number of scatterings in traversing a thickness t is Nσt, and the mean
square of the independent scatterings is the sum of the individual mean
squares, so if Θ is the total change in angle (in thickness t),

〈Θ2〉 = Nσt〈θ2〉 = 2πN

(
2zZe2

pv

)2

ln

(
θmax
θmin

)
t.

This fuzziness in the direction of the track will limit the accuracy with
which one can determine the initial direction of a charged particle emerging
from a collision in a detector, or determine the momentum of a charged
particle from its track bending in a magnetic field.

We will skip the rest of Chapter 13.

3 Radiation by Moving Charges

We will now consider the radiation field produced by a moving charge un-
dergoing a specified motion through space-time. We are assuming no incom-
ing field, so the electromagnetic field is that given by the retarded Green’s
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function with the point particle source. In lecture 17 we found the Green’s
function is

Dr(z
µ) =

Θ(z0)

4πR
δ(z0 −R), (1)

where R = |~z|, and the source of a point particle is

Jµ(xν) = qc
∫
dτ δ4(xν − rν(τ))Uµ(τ), (2)

where rµ(τ) is the worldline position of the particle at its proper time τ , and
Uµ(τ) is its 4-velocity at the same space-time event. The Green’s function can
be written more covariantly by noting that Θ(z0)δ(zµzµ) = Θ(z0)δ(z2

0−R2) =
Θ(z0)δ[(z0 −R)(z0 +R)] = 1

2R
δ(z0 −R), as z0 and R are both non-negative.

So we may rewrite

Dr(z
µ) =

Θ(z0)

2π
δ(zµz

µ), (3)

which is a manifestly covariant form1.
The radiation field is thus

Aµ(xν) =
4π

c

∫
d4x′Dr(x− x′)Jµ(x′)

= 2q
∫
d4x′dτΘ(x0 − x′ 0)δ((x− x′)2)δ4(xν − rν(τ))Uµ(τ)

= 2q
∫
dτΘ(x0 − r0(τ))δ((x− r(τ))2)Uµ(τ). (4)

We can use the remaining δ function to do the τ integral, using δ(f(τ)) =∑
τj

1
|df/dτ |τj

δ(τ − τj), where τj are the set of points for which f(τ) vanishes.

In the current case, f vanishing means rµ(τ) lies on the light-cone of the
point xµ, and the Θ function restricts our attention to the single point in
the past that the particle crossed this light-cone2. As d(x − r(τ))2/dτ =
−2(xρ − rρ(τ))Uρ(τ), we find

Aµ(xν) = q
Uµ(τ)

(xρ − rρ(τ))Uρ

∣∣∣∣∣
τ0

,

where the functions of τ are evaluated at the one point in the past where
the particle left the lightcone of xν . This 4-vector potential is known as the
Liénard-Wiechert potential.

1Under proper isochronous Lorentz transformation. Obviously not under time reversal.
2We assume the particle has a mass and so is always travelling at a velocity less than

c, and that it is not passing exactly through the point xµ.
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To evaluate the electric and magnetic fields, or F µν , we apply a derivative
to (4):

∂αAβ = 2q
∫
dτ
[(
∂αΘ(x0 − r0(τ))

)
δ((x− r(τ))2)Uµ(τ)

+Θ(x0 − r0(τ))∂αδ((x− r(τ))2)Uµ(τ)
]
.

The first term contains ∂αΘ(x0−r0(τ)) = δα
0 δ(x

0−r0(τ)), which contributes
only if xµ and rµ(τ) are at the same time. But this is multiplied by a δ
function that requires rµ(τ) to be on the light-cone of xµ, which rules out
all such points except the point xµ = rµ(τ), and we have already assumed
the particle does not pass exactly through the point in question. This leaves
the term with ∂αδ(f(xµ, τ)), where f = (xµ − rµ(τ))2. As the delta function
only depends on f , the chain rule says

∂αδ(f(xµ, τ)) =

(
d

df
δ(f)

)
∂αf = 2(xα − rα(τ))

(
df

dτ

)−1
d

dτ
δ(f)

= − (x− r(τ))α

(x− r(τ))ρUρ

d

dτ
δ(f).

Then

∂αAβ = −2q
∫
dτΘ(x0 − r0(τ))Uµ(τ)

(x− r(τ))α

(x− r(τ))ρUρ

d

dτ
δ((xµ − rµ(τ))2)

= 2q
∫
dτΘ(x0 − r0(τ))δ((xµ − rµ(τ))2)

d

dτ

(
Uµ(τ)(x− r(τ))α

(x− r(τ))ρUρ

)
,

where we have integrated by parts, discarding the dΘ/dτ term as before, and
discarding surface terms as the particle was not on the light-cone at infinity.
As we did for Aµ, the remaining delta function can be used to do the τ
integral, which gives another factor of U · (x− r) in the denominator, and

F αβ =
q

Uρ(xρ − rρ(τ))

d

dτ

[
(x− r(τ))αUβ(τ)− (x− r(τ))βUα(τ)

Uµ(xµ − rµ(τ))

]∣∣∣∣∣
τ0

. (5)

The τ derivative acts on an expression involving the position and the
velocity of the charged particle. When it acts on the velocities, it gives a
piece proportional to the acceleration of the particle. When the derivative
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acts on r, it either kills one of the factors of x − r in the numerator or
squares one in the denominator, so these terms fall off as 1

|~x|2 , and represent
static fields. The acceleration piece, however, behaves at large distances as
we expect for radiation, falling as 1/|~x| and having transverse ~E and ~B.

Consider the effect of a uniformly moving charge, without acceleration.
Then the derivative cannot act on a U and must act on one factor of xσ −
rσ(τ), on which it gives −Uσ. The terms which come from differentiating the
numerator cancel, and the derivative of the denominator is just −U2 = −c2,
so we have

F αβ =
qc2

(Uρ(xρ − rρ(τ)))3

[
(x− r(τ))αUβ(τ)− (x− r(τ))βUα(τ)

]
.

Let the particle be moving along
the x axis, and let us observe from
the point x = z = 0, y = b.
Set our clock to zero at the mo-
ment the particle crosses x = 0.
Then we have ~r = vtêx, for which
Uα = (γc, γv, 0, 0) and rα(τ) =
Uατ , and we are observing at the
point xµ = (ct, 0, b, 0). The par-
ticle left the light-cone at time t0
for which (xµ − rµ(t0))

2 = 0. xµ −
rµ(t0) = (c(t − t0),−vt0, b, 0), so
c2(t − t0)

2 − v2t20 − b2 = 0. or

t0 = γ2(t−
√
t2β2 + b2/c2γ2).

R

r(t)r(t  )

θ

0
0

b

v

n

v(t )t0 v  t
x

y

The diagram shows the position of the particle at the time t0 at which it
can emit the lightlike ray towards the observer a distance R away. Let n̂ be
a unit 3-vector in that direction. As drawn t is negative, and the distance
already travelled (v(t − t0)) and the distance yet to be travelled in time
−t are indicated. The quantity Uα(xα − rα(t0)) = γ(c2(t − t0) + v2t0) =

c2γ(t− γ−2t0) = c2γ
√
t2β2 + b2/c2γ2 = c

√
b2 + v2γ2t2.

Let us evaluate the y component of the electric field:

E2 = F02 = qc2
(x− r)2U0

(Uα(x− r)α)3
=

qbγ

(b2 + v2γ2t2)3/2
.
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4 Power Radiated

Our previous calculation of a nonaccelerating particle had no radiation, and
the results could have been found by transforming to the rest frame and using
Coulomb’s law. More interesting is what happens if the particle accelerates.
The power radiated per unit area is given by the Poynting vector

~S =
c

4π
~E × ~B → c

4π
~E 2n̂.

We could evaluate this directly from our complete formula (5), but Jackson
pursues a clever trick — the instantaneous power can be evaluated in the
momentary rest frame. As Energy and time transform the same way, the
total power emitted is an invariant. In the rest frame dUα/dτ = (0, ~̇v),

rµ = (ct−R,~0), xµ − rµ = (R, ~R) = R(1, n̂), U · (x− r) = Rc

~E =
∑

i

F0iêi =
q

Rc


R(−~̇v)− ~R · 0

cR
− R · 0− c ~R (−~̇v) · ~R

c2R2




= − q

c2R

[
~̇v + n̂ n̂ · ~̇v

]
=

q

c2R
n̂× (n̂× ~̇v).

Then the power per sterradian is

dP

dΩ
=

q2

4πc3
|n̂× ~̇v|2 =

q2

4πc3
|~̇v |2 sin2(ψ),

where ψ is the angle between the acceleration and the vector n̂ pointing to
the observer. The integral gives

P =
2q2

3c3
|~̇v |2.

Jackson argues that we can get the relativistic equation be noting that
the power needs to be an invariant expression built from Uα (or pα) and the
first derivative dpα/dτ . The formula in the rest frame can be expressed as

P =
2

3

q2

m2c3
d~p

dt
· d~p
dt

= −2

3

q2

m2c3
dpα

dτ

dpα

dτ
in the rest frame,
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but the last expression is invariant. In any other frame, it gives

P =
2

3

q2

m2c3



(
d~p

dτ

)2

− 1

c2

(
dE

dτ

)2

 .

Using E = mc2γ, ~p = mcγ~β, and d/dτ = γd/dt, and noting from γ−2 =
1−β2 =⇒ −2γ−3dγ = −2βdβ =⇒ dγ = γ3βdβ, the term in brackets is m2c2

times

γ2

[(
γ3ββ̇~β + γ ~̇β

)2

− (γ3ββ̇)2

]

= γ2
[
γ6β4(β̇)2 + 2γ4ββ̇~β · ~̇β + γ2(~̇β)2 − γ6β2β̇2

]

= γ6β̇2
(
γ2β4 − γ2β2 + 2β2)

)
+ γ4(~̇β)2

because ~β · ~̇β = 1
2
d~β 2/dt = 1

2
dβ2/dt = ββ̇. But γ2(β4 − β2) = −β2, so

P =
2

3

q2

c
γ6
(
γ−2(~̇β)2 − β2β̇2

)
.

The parentheses may be rewritten (~̇β)2 − β2

(
(~̇β)2 − β̇2

)
= (~̇β)2 − (~β × ~̇β)2

because (~β× ~̇β)2 = (~β)2(~̇β)− (~β · ~̇β)2 and the last term is −β2β̇2 as explained
above. So all in all,

P =
2

3

q2

c
γ6
[
(~̇β)2 − (~β × ~̇β)2

]
.

The rest of section 14.2 is certainly important but straight-
forward, so I will not rewrite it. You should read it.


