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1 L, H, canonical momenta, and Tµν for E&M

We have seen field theory needs the Lagrangian density

L(Aµ, ∂Aµ/∂xν , Jρ, xξ)

and the equations of motion come from the functional derivatives
δL

δAµ(xν)

and
δL

δ(∂ρAµ(xν))
. The first is an integral over d3x′ of

δL(x′µ)

δAµ(xν)
, which contains

a δ(x′−x) function. Because we are always integrating over x′, we used partial
derivative notation amd treated the Aµ(xν) dependence of L as if it were a
simple argument instead of a function. This gave us equations of motion
at each point in space-time. These Euler-Lagrange equations involved not a
total momentum but a momentum density. For a scalar field φj this would
be

P µ
j (xρ) =

∂L
∂∂µφj

∣∣∣∣∣
xρ

.

As we have not a scalar but four fields Aν , we have four 4-vector fields

P µ
α :=

∂L
∂

(
∂Aα(~x, t)

∂xµ

) .

Last time we saw that the lagrangian density for the electromagnetic fields
is

L = − 1

16π
F µνFµν − 1

c
JµA

µ,

so the canonical momentum densities are

P µ
α :=

∂L
∂(∂Aα(~x, t)/∂xµ)

= − 1

4π
F µ

α,

because, as we saw last time, this only involves the F 2 term.
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1.1 The Stress (Energy-Momentum) Tensor

In discrete mechanics we define the Hamiltonian by H =
∑

i Piq̇i − L and
then substitute for q̇i the expression for it in terms of Pj . In field theory we
start with the Lagrangian density, and the fields Pi(~x) and φ(~x), so we get
the Hamiltonian density

H(~x) :=
∑

i

Pi(~x)φ̇i(~x)−L(~x) =
∑

i

∂L
∂(∂φi/∂x0)

∂φi

∂x0
− L.

We see that this is naturally defined with two Lorentz indices, both of which
are 0, so it is one component of a tensor

T µ
ν =

∑
i

∂L
∂(∂φi/∂xµ)

∂φi

∂xν
− δµ

νL.

This object goes by the names energy-momentum tensor or stress-
energy tensor or canonical stress tensor. For electromagnetism, φi is
replaced by Aλ, the first factor in the first term is

∂L
∂(∂Aλ/∂xµ)

= − 1

4π
F µ

λ,

the second factor is
∂Aλ

∂xν
,

so our first (tentative) expression for the energy momentum tensor is

Tµν = − 1

4π

(
Fµλ

∂Aλ

∂xν
− 1

4
ηµνF

αβFαβ

)
.

This tensor has some good properties and some bad properties. We have
seen that its 00 component is the hamiltonian density, which we may interpret
as the energy density. We might expect, then, that T 0i could be interpreted
as the density of momentum, and the integral of it, over all space, the i’th
component of the total momentum. But we see that

T 0i =
1

4π
F0λ∂iA

λ =
1

4π
Ej∂iAj =

1

4π

(
~E × ~B +

(
~E · ~∇

)
~A
)

i
.

We expect the ~E × ~B term from the expression for the Poynting vector, but
not the last term, which is not even gauge invariant. It is, however, in the
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absence of charges (and we have not included the momentum of any charges)

a total derivative (as then ~∇· ~E = 0, and ~∇· (Ai
~E) =

(
~E · ~∇

)
~Ai +Ai

~∇· ~E).
So the integral of this density will give what we want. Thus we have the
good property that

∫
d3xT 0µ = P µ, the total momentum. (1)

The way T µν is defined in general guarantees that, if the Lagrangian has
no explicit dependence on xµ, the (stream) divergence ∂µT

µ
ν will vanish when

evaluated on fields which obey the equations of motion. We have

∂µT
µ
ν =

∑
i

(
∂µ

∂L
∂(∂µφi)

)
∂νφi +

∑
i

∂L
∂(∂µφi)

∂µ∂νφi − ∂νL.

The derivative in the last term is given by the chain rule

−∂νL = −∑
i

∂L
∂φi

∂νφi −
∑

i

∂L
∂ (∂µφi)

∂ν∂µφi

so

∂µT
µ
ν =

∑
i

(
∂µ

∂L
∂(∂µφi)

− ∂L
∂φi

)
∂νφi

and the parenthesis vanishes by the equations of motion. Thus we have

∂µT
µ
ν = 0. (2)

Notice that the tensor we have defined so far, T µν is not symmetric under
µ↔ ν, which is a problem when it comes to defining the angular momentum.
If T 0j is truly the momentum density, we would expect

∫
εijkxjT

0kd3x to be
the angular momentum, but in fact that only works if T µν is symmetric.

So we have good properties (1) and (2), but we have the problems that T µν

is not gauge invariant, is not symmetric, and differs from Poynting locally.
Can we add something to T which will fix these problems without messing up
the good properties? Note that if we add ∂ρψ

ρµν to T µν , with the requirement
that ψρµν = −ψµρν , the extra piece will change (2) by ∂µ∂ρψ

ρµν = 0, i. e.
unchanged, because the derivatives are symmetric while ψ is antisymmetric.
Furthermore, the integral over space of T 0µ gets an addition of

∫
d3x∂ρψ

ρ0ν =∫
d3x∂jψ

j0ν =
∫
S njψ

j0ν → 0 where the surface S goes to infinity, where we
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can assume all our fields go to zero1. Thus adding ∂ρψ
ρµν preserves all the

good properties.
So consider ψρµν = AνF µρ/4π, and adding

1

4π
∂ρ (AνF µρ) =

1

4π
(∂ρA

ν)F µρ

because ∂ρF
µρ = 0 in the absence of a source Jµ. But this is just what we

need to add to T µν to make

Θµν = T µν +
1

4π
F µρ∂ρA

ν = − 1

4π

(
F µρF ν

ρ −
1

4
ηµνF αβFαβ

)
.

This expression has all the good properties and is also gauge invariant and
symmetric. Furthermore,

Θ0i = − 1

4π
F 0jF i

j =
1

4π
EjεijkBk =

1

4π
( ~E × ~B)i,

the correct momentum density or energy flux, as given by Poynting.

1.2 Ambiguities in the Action

The action we used for the electromagnetic field by itself depends only on
Fµν , that is, on the electric and magnetic fields, but the interaction term with
currents, Aint = −(1/c)

∫
d4xJµA

µ depends on the 4-vector potential, which,

as we know, is not uniquely defined, because the physical fields ~E and ~B are
unchanged by a gauge transformation Aµ → A′

µ = Aµ + ∂µΛ, that is, we
could add a piece to the action of −(1/c)

∫
d4xJµ∂µΛ. This would, however,

make no difference to the equations of motion, because the∫
d4xJµ∂µΛ =

∫
S
nµJ

µΛ−
∫
d4xΛ∂µJ

µ,

where S is a hypersurface surrounding the four dimensional region we are
considering, which means a hypersurface at infinity. We can provide some
excuse for claiming either Jµ or Λ vanishes at infinity, so the (hyper)surface
term can be discarded, and the other term involves the divergence of the
current, which we know has to be zero by conservation of charge.

1We often take a cavalier attitude about such arguments, but you should keep a small
reservation in the back of your head that under some circumstances there may be anomolies
that make it impossible to assure that these terms can be ignored
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This invariance is a general feature of lagrangian mechanics. Because it
is only the variation of the lagrangian, and not the lagrangian, that matters
physically, and the fields are varied only inside the region and not on the
surface, any change in the lagrangian density by a divergence, or of the
lagrangian by a total time derivative, is irrelevant to the physics.

1.3 Θµν in the presence of currents

We saw that the energy-momentum tensor of the electromagnetic field can
be considered to be

Θµν = − 1

4π

(
F µρF ν

ρ −
1

4
ηµνF αβFαβ

)
,

and in the absence of any sources, it is conserved, ∂µΘµν = 0. What happens
if there are sources? Now

4π∂µΘµν = ∂µ

(
F µρF ν

ρ +
1

4
ηµνF αβFαβ

)

= (∂µF
µρ)F ν

ρ + F µρ∂µF
ν

ρ +
1

2
F αβ∂νFαβ

=
4π

c
JρF ν

ρ +
1

2
F αβ

(
∂αF

ν
β − ∂βF

ν
α + ∂νFαβ

)

=
4π

c
JρF ν

ρ +
1

2
F αβηνρ (∂αFβρ + ∂βFρα + ∂ρFαβ)

=
4π

c
JρF ν

ρ ,

as the term in parentheses is zero by the homogeneous Maxwell equations.
Thus the total 4-momentum of the electromagnetic field

P ν =
1

c

∫
d3xΘ0ν(~x),

is not conserved, but rather

dP ν
EM

dt
=

1

c

d

dt

∫
d3xΘ0ν(~x) =

∫
d3x ∂0Θ

0ν(~x)

=
1

c

∫
d3xJρ(~x)F ν

ρ (~x)− 1

c

∫
d3x∂iΘ

iν =
1

c

∫
d3xJρ(~x)F ν

ρ (~x),

as the integral of a divergence can be thrown away as a surface term at
infinity.
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Consider a charged particle of mass mi, charge qi at point ~xi(t). Its
mechanical 4-momentum changes by

dP ν
(i)

dt
=

1

γi

dP ν
(i)

dτ
=

1

γi

qi
c
F ν

ρ(~xi)U
ρ
i .

This particle corresponds to a 4-current

Jρ = (cρ, ~J) = (cqiδ
3(~x− ~xi), qiuiδ

3(~x− ~xi) = qiγ
−1
i Uρ

i δ
3(~x− ~xi).

Plugging this into our expression for the change in the momentum of the
electromagnetic field, we have

dP ν
EM

dt
=
qi
c

∫
d3xF ν

ρ (~x)γ−1
i Uρ

i δ
3(~x− ~xi) = − qi

cγi

F ν
ρ(~xi)U

ρ
i ,

and the total momentum, P ν
EM + P ν

(i) is conserved.

1.4 Equation of Motion for Aµ

We saw that the equations of motion for the 4-vector potential are

∂σF
σµ = ∂σ∂

σAµ − ∂µ∂σA
σ =

4π

c
Jµ.

If we had an equation that told us to inforce the Lorenz condition ∂σA
σ = 0,

we could drop the second term and have the equation

∂σ∂
σAµ =

4π

c
Jµ,

which has as its solutions a particular solution given in terms of the Green’s
function for the wave equation, together with an arbitrary solution of the ho-
mogeneous equation ∂σ∂

σAµ = 0. Let us discuss this homogeneous solution
first. With the Lorenz condition imposed, the solution is simply

∑
~k

(
Aµ

~k +
ei~k·~x−iω~k

t + Aµ
~k−e

i~k·~x+iω~k
t
)
,

where ω = c|~k|. This solution is constrained by the Lorenz condition to have

ωA0
~k± ∓~k · ~A~k± = 0. These are the solutions for an electromagnetic wave in

empty space.
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But if we don’t impose the ad-hoc Lorenz condition, the equations

∂σ∂
σAµ − ∂µ∂σA

σ = 0

are not enough to determine the evolution of Aµ(~x, t) as a function of time,
even if we completely specify initial conditions on Aµ(~x, 0) and its time deriva-
tive at t = 0. This is most easily seen in the Fourier transformed equation

kσk
σAµ − kµkσA

σ = 0,

which, though it looks like four equations for Aρ, is actually only three,
because if we contract with kµ we get

kσk
σkµA

µ − kµk
µkσA

σ = (k2 − k2)kρA
ρ = 0,

which is not a constraint on Aρ but an identity. In other words, the equation
only determines the components of A transverse to k.

This is yet another indication of the gauge invariance, the statement that
a gauge-invariant action principle cannot determine the evolution of a gauge-
variant field because no equation will determine the gauge transformation Λ.

We can, however, adopt the Lorenz gauge condition and ask what the
equation that determines Aµ in that gauge is.

So we turn to the inhomogeneous equation

Aµ = ∂β∂
βAµ =

4π

c
Jµ,

with the solution

Aµ(x) =
4π

c

∫
d4x′D(x, x′)Jµ(x′),

where D(x, x′) is a Green’s function for D’Alembert’s equation

xD(x, x′) = δ4(x− x′).

We are interested in solving this in all of spacetime, without boundaries at
finite distances, so the equation is translation invariant and D must be a
function only of the difference, D(x, x′) = D(x− x′) = D(z). The equation
may be solved by Fourier transform,

D(z) =
1

(2π)4

∫
d4kµD̃(kµ)e−ikµzµ

.
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As δ4(zµ) = 1
(2π)4

∫
d4ke−ikµzµ

, the solution for the Green’s function is

D̃(kµ) = − 1

k2
, and D(zµ) = − 1

(2π)4

∫
d4k

e−ikµzµ

k2
.

Now this looks very similar to the Green’s function for the Laplace equation,
except that the 1/k2 is much more dangerous here, as it vanishes whenever

k2
0 = ~k 2, and not just at one point in a three dimensional space. For Laplace’s

equation the ill-defined point in the integration was just a sign that a po-
tential satisfying Laplace’s equation could have an arbitrary constant and
first derivative, the solutions of the homogeneous equation. Here too the ill-
determined part of D represents the homogeneous solutions, but this is now
an infinite dimensional space of solutions, all free electro magnetic waves.

The ill-defined integral through the singular point can be clarified by
writing the Green’s function first as

D(z) = − 1

(2π)4

∫
d3kei~k·~z

∫
Γ
dk0

e−ik0z0

k2
0 − |~k|2

.

We may make a well defined
Green’s function by specifying that
the contour Γ should not go right
along the real axis of k0, but rather
around the poles at k0 = ±|~k|.
Three such contours are shown. As
the integrand is analytic except at
the points k0 = ±|~k|, the contours
may be deformed so that they be-
come the real k0 axis beyond the re-
gion with the poles.

r

a
F

0k

The retarded (r), advanced (a), and
Feynman (F ) contours for defining
the Green’s function.

Consider first the Green’s function as given by the contour r. If the source
acts at time 0, and if we evaluate D(z) at a time after that, with z0 > 0,
the contour Γ may be closed by taking a large semicircle in the lower half
complex plane, where

∣∣∣e−ik0z0
∣∣∣ = e−| Im k0|z0 −→

|k|→∞
0, so this semicircle makes

no contribution to the integral but does allow us to evaluate it as −2πi times
the sum of the two residues. The minus is due to our circling these residues
clockwise rather than counterclockwise, and the residues are

Res
k0=|~k|

e−ik0z0

(k0 + |~k|)(k0 − |~k|)
+ Res

k0=−|~k|

e−ik0z0

(k0 + |~k|)(k0 − |~k|)
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=
e−i|~k|z0

2|~k| +
ei|~k|z0

−2|~k| = −isin(|~k|z0)

|~k| .

On the other hand, if z0 < 0 we may close the contour in the upper half plane,
as the semicircle contribution now vanishes there, and we have encircled no
singularities and the Cauchy-Goursat theorem tells us it vanishes. Thus

Dr(z) =
Θ(z0)

(2π)3

∫
d3kei~k·~z sin(|~k|z0)

|~k| .

Choosing the North pole along ~z using spherical coordinates, this becomes

Dr(z) =
Θ(z0)

(2π)2

∫ ∞

0
k2 dk dθ sin θ eikR cos θ sin(kz0)

k

=
Θ(z0)

2π2R

∫ ∞

0
dk sin(kR) sin(kz0),

where R = |~z|. The Green’s function is called the retarded Green’s function
because the effects occur only after the source acts. It is also called the causal
Green’s function because this is how things ought to be, though it would be
perfectly consistent to use the contour a and the advanced Green’s function
to ask what configuration of incoming waves could be magically made to
disappear by interacting with a given source Jµ.

The third contour shown in the figure gives the Feynman propagator,
which is used in quantum field theory. But we need not discuss that here.

The expression for Dr(z) can be further simplified by writing

sin(kR) sin(kz0) =
1

2

[
cos(k(R− z0))− cos(k(R+ z0))

]

=
1

4

[
ei(z0−R)k − ei(z0+R)k + ei(z0−R)(−k) + ei(z0−R)(−k)

]

so

Dr(z) =
Θ(z0)

8π2R

∫ ∞

−∞
dk
[
ei(z0−R)k − ei(z0+R)k

]

=
Θ(z0)

4πR
[δ(z0 −R)− δ(z0 +R)]

=
Θ(z0)

4πR
δ(z0 − R),
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where the second δ was dropped because both z0 and R are positive. So the
Green’s function only contributes when the source and effect are separated
by a lightlike path, with ∆z0 = |∆~z|.

So how do we describe the field when we know what the sources are
throughout space-time? We can use any of the Green’s functions to get the
inhomogeneous contribution, and then allow for an arbitrary solution of the
homogeneous equation. Thus we can write

Aµ = Aµ

in(x) +
4π

c

∫
d4x′Dr(x− x′)Jµ(x′)

= Aµ
out(x) +

4π

c

∫
d4x′Da(x− x′)Jµ(x′).

If the sources are confined to some finite region of space-time, there will be
no contribution from Dr at times earlier than the first source, and Aµ

in(x)
describes the fields before that time. Also after the last time that the source
influences things, the field will be given by Aµ

out(x) alone. Of course the
source may be persistent, for example if there is a net charge, but we may
often consider that the effect of the source is confined to the change from
Aµ

in(x) to Aµ
out(x) and define the radiation field to be

Aµ

rad(x) = Aµ
out(x)− Aµ

in(x) =
4π

c

∫
d4x′D(x− x′)Jµ(x′),

where D(z) := Dr(z)−Da(z).
The expression we wrote earlier for the current density of a point charge,

Jρ = qiγ
−1
i Uρ

i δ
3(~x− ~xi)

can be written in this four-dimensional language as

Jρ(xµ) = qi

∫
dtδ(t− x0/c)γ−1

i Uρ
i δ

3(~x− ~xi(t)) = qic
∫
dτδ4(xµ − xµ

i (τ))Uρ
i ,

where τ measures proper time along the path of the particle.


