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1 More on Lorentz Transformations

We saw last time that a (proper) finite Lorentz transformation Aµ
ν can be

thought of as being built up from an infinite number of infinitesimal trans-
formations,

Aµ
ν = lim

N→∞

[(
δ·· +

ω

N
L·
·

)N
]µ

ν

= eωL··,

where the matrix Lµ
ν needs to satisfy Lµν = −Lνµ, and have real matrix

elements. Thus the vector space of such infinitesimal generators can be de-
scribed by a basis of such matrices, Lαβ, so

Lµ
ν =

∑
αβ

cαβ (Lαβ)µ
ν ,

where cαβ is antisymmetric, cαβ = −cβα, and1

(Lαβ)µν = δµ
αδν

β − δν
αδµ

β .

Note carefully where some indices have moved from up to down. The six
independent Lαβ is each a 4× 4 matrix, not the αβ matrix element of one.
The Lαβ with one index 0 generate Lorentz boosts, while those with two
spatial indices generate rotations. Thus we may choose to look at these as
two sets of three-vectors,

(Ki)
·
· =

(
L i

0

)·
· , (Si)

·
· = −1

2
εijk

(
L k

j

)·
· .

In problem 11.10 and, for part b, the similar statement for S, you can find
the forms for an arbitrary Lorentz boost or an arbitrary rotation (but not an
arbitrary mixture of them!).

The generators Si of rotations should be familiar (with an i added) from
quantum mechanics, where like all angular momentum operators they satisfy

1The L of Jackson 11.90 is Lµ
ν =

(
L β

α

)µ
ν
.
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commutation relations. Here, due to the extra i, we have [Si, Sj ] = εijkSk.
More generally,

[Lαβ,Lγζ]
µ
ν =

({(
δµ
αηβρδ

ρ
γηζν − (α ↔ β)

)
− (γ ↔ ζ)

}

−(α ↔ γ and β ↔ ζ)
)

= δµ
αηβγηζν − δµ

βηαγηζν − δµ
αηβζηγν + δµ

βηαζηγν

−δµ
γ ηζαηβν + δµ

ζ ηγαηβν + δµ
γηζβηαν

= ηβγ

(
δµ
αηζν − δµ

ζ ηαν

)
− ηβζ

(
δµ
αηγν − δµ

γ ηαν

)
−ηαγ

(
δµ
βηζν − δµ

ζ ηβν

)
+ ηαζ

(
δµ
βηγν − δµ

γηβν

)
= ηβγ (Lαζ)

µ
ν − ηβζ (Lαγ)

µ
ν − ηαγ (Lβζ)

µ
ν + ηαζ (Lβγ)

µ
ν .

There are several observations to be made about this expression. First, we see
that the commutator of two generators is a linear superposition of generators.
This is a feature of a Lie Algebra, which constitutes the generators of a
continuous, or Lie, group. Of course the group of symmetry transformations
which leave the invariant length invariant must be a group. Second, if we
consider a rotation Lij = εijkSk commuted with a Lorentz boost L0` = −K`,
we see that

[Sk, K`] = −1

2
εijk [Lij,L0`] =

1

2
εijk {ηj`Li0 − ηi`Lj0} = εk`iKi,

so the vector of Lorentz boosts rotates as any vector should. If we consider
the commutator of two Lorentz transformations,

[Ki, Kj ] = [L0i,L0j] = −Lij = −εijkSk,

so the commutator of two Lorentz boosts is a rotation!
Now we need to discuss derivatives. In three dimensions we have the

gradient operator ~∇. In four dimensions we use a different notation,

∂µ :=
∂

∂xµ
.

That the derivative operator should be considered a covariant (rather than
contravariant) vector is clear from the chain rule:

∂′µ =
∂

∂x′ µ
=

∂xν

∂x′ µ
∂

∂xν
= A ν

µ ∂ν ,

where I have used A ν
µ = ∂xν/∂x′ µ derived last time.
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1.1 Application to Electromagnetism

So we have learned that physical properties can be scalars (invariant under
Lorentz transformations) or 4-vectors, an appropriate combination of a 3-
vector and a 3-scalar, or more generally they can be tensors with several co-
or contra-variant indices2 We have already found that the momentum and
energy of a particle are combined into the 4-vector pα = (E/c, ~p), but what

about the 3-vectors ~E and ~B? From the Lorentz force law3 for a particle of
charge q,

~F =
d~p

dt
= q

(
~E +

~v

c
× ~B

)

while the rate of change of the kinetic energy of the particle is the power
provided by the electric field,

dE

dt
= q ~E · ~v.

Thus we have an expression for the contravariant proper-time derivative of
the 4-momentum, which can be expressed in terms of the 4-velocity Uα =
(cγ, ~vγ) as

dpα

dτ
=

dt

dτ

dpα

dt
= q

U0

c

(
~E · ~v, ~E +

~v

c
× ~B

)
=

q

c

(
~E · ~U, U0 ~E + ~U × ~B

)
.

2In quantum mechanics the wave function can also be a spinor, such as the wave
function for an electron. In classical mechanics these do not arise, and we will not consider
them. This does not prevent us from considering the spin σ of an electron, which is an
operator on a spinor but is itself a 3-vector (or more properly, ψ†~σψ is a 3-vector).

3Jackson has changed notation at this point — from now on we use Gaussian Units.
The microscopic form of Maxwell’s equations are now

~∇ · ~E = 4πρ ~∇ · ~B = 0

~∇× ~E +
1
c

∂ ~B

∂t
= 0 ~∇× ~B =

4π
c
~J +

1
c

∂ ~E

∂t
,

the Lorentz force is
~F = q

(
~E +

~v

c
× ~B

)
,

Coulomb’s law is ~E = q~r/r3, the fields are related to the vector potential by

~E = −~∇Φ− 1
c

∂ ~A

∂t
, ~B = ~∇× ~A, and ~∇ · ~A+

1
c

∂Φ
∂t

= 0

is now the Lorenz gauge condition.
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We see that ~E and ~B cannot transform independently, for a particle at rest
ignores any ~B while one in motion does not. The left hand side of this
equation is a contravariant 4-vector which depends linearly on the velocity
4-vector, but is not proportional to it. So this calls out for a tensor quantity
F α

β in terms of which
dpα

dτ
=

q

c
F α

βUβ.

Matching terms we see

F 0
0 = 0, F 0

i = Ei, F i
0 = Ei, F i

j = εijkBk.

If we raise the second index or lower the first, we get

F αβ =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 , Fαβ =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 .

Note that F , which is called the field-strength tensor, is antisymmetric.
Those who recall differential forms will be tempted to consider a 2-form
F = 1

2
Fαβdxαdxβ and ask what the exterior derivative is. It will be a three

form associated with the vector

1

12
εαβγζ∂βFγζ ,

where εαβγζ is the totally antisymmetric Levi-Civita symbol for which4

ε0123 = 1. The zeroth component of 12 times this is

εijk∂iFjk = εijk∂i(−1)εjk`B` = −2~∇ · ~B,

which vanishes according to one of Maxwell’s laws. The i’th spatial compo-
nent is

εiβγζ∂βFγζ = εi0jk∂0Fjk + 2εijk0∂jFk0 = −1

c
εijk

(
−εjk`

∂B`

∂t

)
− 2εijk∂j(−Ek)

= 2
(
~∇× ~E

)
i
+

2

c

∂Bi

∂t
,

4In flat space. In general relativity ε0123 = 1/
√| det(gµν)|.
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which also vanishes, by another of Maxwell’s laws. Thus dF = 0 or

1

2
εαβγζ∂βFγζ = 0 (1)

constitute the sourceless half of Maxwell theory. We could also express this
in terms of the dual to the field-strength tensor,

Fαβ :=
1

2
εαβγζFγζ =




0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 .

This dual tensor can be viewed as the result of a duality that changes ~E → ~B
and ~B → −~E. In terms of F , (1) is

∂µFµν = 0.

But Maxwell’s equations are not invariant under this duality except in
the absence of sources, for there are no magnetic monopoles, at least as far
as we currently know. What is the equivalent of dF or Eq. 1 with F → F?

εαβγζ∂βFγζ = εαβγζ∂βεγζρσ
1

2
F ρσ = 3

(
δα
ρ δβ

σ − δα
σδβ

ρ

)
∂βF ρσ = 6∂βF αβ

Well, the α = 0 component of ∂βF αβ is

∂jF
0j = −~∇ · ~E = −4πρ,

and the spatial components are

∂βF iβ =
∂F i0

c∂t
+ ∂j(−εijkBk) =


−~∇× ~B +

1

c

∂ ~E

∂t




i

= −4π

c
~Ji.

We see that we need to combine ~J and ρ into

jα =
(
cρ, ~J

)

and we now have

∂µF µν =
4π

c
jν .
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Notice this has a familiar immediate consequence:

∂ν (∂µF µν) =
4π

c
∂νj

ν = 0

where the vanishing comes because ∂ν∂µ is symmetric under µ ↔ ν while
F µν is antisymmetric. Thus we see that

∂νj
ν = 0 =

∂cρ

c∂t
+ ~∇ · ~J,

the equation of continuity follows from Maxwell’s equations.
Notice that we have the charge density ρ transforming like the zeroth

component of a 4-vector. Is this right? Charge is invariant, so the charge in
a given infinitesimal volume, dq = ρd3x should be invariant, but the volume
suffers a Fitzgerald contraction under Lorentz transformation. Indeed, the
four-dimensional volume element d4x = dx0d3x is invariant, because

d4x′ = det

(
∂x′µ

∂xν

)
d4x = det

(
Aµ

ν

)
d4x.

Taking the determinant of the condition for A·
· to be a Lorentz transforma-

tion,
ηαβAα

µA
β
ν = ηµν (2)

we have det η··(det A·
·)

2 = det η·· or det A·
· = ±1. This brings up an issue

we have neglected. Is any matrix satisfying (2) a Lorentz transformation?
If O′’s reference frame was originally boosted from O’s by firing the rocket
engines, the velocity relative to O and the Lorentz transformation should
evolve continuously. As it starts with Aµ

ν = δµ
ν which has determinant 1,

and a matrix with continuously varying matrix elements has its determinant
varying continuously, the determinant cannot jump to −1 and must be 1. So
d4x is invariant and ρ transforms the same way dx0 and x0 do.

There is another constraint on A if this continuous connection is im-
posed. Taking the 00’th matrix element of (2), we have ηµνA

µ
0A

ν
0 = (A0

0)
2−

(Ai
0)

2 = 1, so |A0
0| ≥ 1. Again, starting at 1, it cannot vary continuously to

get to a negative number.
We will call any matrix satisfying (2) a Lorentz transformation, but re-

strict our attention to those with determinant +1 (proper Lorentz transfor-
mations) and with A0

0 ≥ 1 (orthochronous Lorentz transformations). Note
the latter is the condition that time runs in the same direction for both
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observers. The parity operation ~x → −~x, t unchanged, is an improper or-
thochronous Lorentz transformation, while time reversal together with parity,
~x → −~x, is non-orthochronous but proper. Physics, so far, is invariant under
proper orthochronous Lorentz transformations, as Einstein wanted, but not
the others (see Wu and Yang, Fitch and Cronin).

Getting back to the four dimensional form of Maxwell’s equations, form-
friendly observers having noted that dF = 0 will be encouraged to ask what
1-form A satisfies F = dA, which, for the form-unfriendly among you, says

Fµν = ∂µAν − ∂νAµ. (3)

Clearly we are to suspect the 4-vector

Aµ =
(
Φ, ~A

)
,

where Φ is the electrostatic potential and ~A the usual vector potential. Indeed
the 0j component of (3) says5

Ej =
1

c

∂Aj

∂t
− ∂jΦ = −


~∇Φ +

1

c

∂ ~A

∂t




j

,

and the ij component gives5

−εijkBk = ∂iAj − ∂jAi = −εijk

(
~∇× ~A

)
k

The Lorenz gauge condition is

0 = ~∇ · ~A +
1

c

∂A0

∂t
= ∂µAµ.

Finally, the operator for the wave equation in empty space is

∇2 − 1

c2

∂2

∂t2
= −∂µ∂µ =: − .

5 Note Aµ for µ = j is Aj = −Aj = −( ~A)j . I apologize for this confusing notation, one
reason for preferring the opposite choice of sign for η from the one Jackson chooses.


