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1 Curvilinear Coordinates

Many of our notions in “vector calculus” are developed in the context of carte-
sian coordinates describing a Euclidean space. We will use ri, i = 1, 2, . . .D
as cartesian coordinates describing a D dimensional Euclidean space. (Note
the index on the coordinates has been written as a superscript rather than as
a subscript — this is in preparation for discussing Minkowski space soon and
curved spaces, possibly, later in your career.) Usually we will take D = 3.
Being a Euclidean space, the distance δs between the points labelled with
{ri} and {ri + δri} is given by Pythagoras:

(δs)2 =
∑

i

(δri)2.

Vectors are discribed in terms of unit vectors êi, and a displacement is a
vector ∆~r =

∑
i ∆riêi. Scalar and vector fields can be considered functions

of ~r or functions of the D coordinates {ri}, and the gradiant and laplacian
of a scalar function Φ(~r), and the divergence and curl of a vector function
~V (~r) are given by

~∇Φ =
∑

i

∂Φ

∂ri
êi,

~∇ · ~V =
∑

i

∂Vi

∂ri
,

∇2Φ = ~∇ · ~∇Φ =
∑

i

∂2Φ

∂ri 2
,

~∇× ~V =
∑
ijk

εijk
∂Vk

∂rj
êi,

where the last expression applies only in D = 3 and uses the totally anti-
symmetric tensor εijk, which in Euclidean space with Cartesian components
takes the value1 ε123 = 1.

1In differential geometry, or in the discussion of forms without the restriction to or-
thonormal basis vectors, one introduces the Levi-Civita symbol εijk (with D subscripts in
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But there are many situations in which it is useful to use coordinates other
than cartesian, not to mention spaces which are other than Euclidean. So we
need to develop the expressions appropriate to these generalized coordinates
for vectors and these differential operators.

A generalized coordinate system qi, i = 1, . . .D is a parameterization of
the space, that is, we do assume that the {qi} describe the space, so that
any point described by ~r in cartesian coordinates may also be described in
the new system by {qi = qi(~r)}, and each triplet (q1, q2, q3) (or D-plet) in
some allowed range specifies a unique point ~r(q1, q2, q3). This map must be
one-to-one, at least locally2 at a generic point. This requires the Jacobian
det(∂qi/∂rj) 6= 0.

The first step is to describe the distance between two points close to each
other. If we consider the distance ds between two infinitesimally separated
points P and P ′ described by qi and qi + δqi in generalized coordinates and
by ~r and ~r + δ~r in cartesian coordinates, we may write

(δs)2 =
∑
k

(δrk)2 =
∑
k

(∑
i

∂rk

∂qi
δqi

)∑
j

∂rk

∂qj
δqj


 =

∑
ij

gijδq
iδqj ,

where

gij =
∑
k

∂rk

∂qi

∂rk

∂qj
.

This real symmetric matrix is known as the metric tensor. It is in general
a nontrivial function of the position, gij(q).

To repeat: the metric tensor determines the distance between neighboring
points,

(δs)2 =
∑
ij

gijδq
iδqj.

A scalar function on three dimensional space may be given as a function
of the cartesian coordinates f(~r) or of the generalized coordinates f̃(qi). As

D dimensional space), which is proportional to, but not equal to, the flat-space εijk for
which ε123 = 1. The relation is εijk =

√| det g..|εijk. The volume element is then given
by the D-form

∑
εµ1,...µD dqµ1 ∧ · · · ∧ dqµD . But in this lecture we will only use εijk, not

εijk. Note the notational distinction I have made is not standard.
2Many generalized coordinate systems have singular points and domains so that the

qi’s are not defined over the entire real line. For example, in spherical coordinates r ≥ 0,
and at r = 0, all values of θ and φ correspond to the same point.
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this is supposed to be actually a function of the point rather than of the
coordinates used to describe the point, we must have f̃(q) = f(~r(q)).

The gradient of a scalar function is a vector function, a vector at each
point of the space. It is the same vector at a given physical point regardless
of which coordinate system we use, but the expression of this vector will
depend on the basis vectors used. We do not expect to use the cartesian
basis vectors êi with the generalized coordinates, so we ask how to define, in
general, the appropriate basis vectors “in the qi direction”. For instance, we
might define the unit vector

ẽ1 = lim
δq1→0

~r(q1 + δq1, q2, q3)− ~r(q1, q2, q3)

δs
=
∑
k

∂rk

∂q1
êk/

√
g11,

and similarly for the other ẽi In general, however, these will not be orthogo- ⊥ 2/2
nal, as

ẽ1 · ẽ2 =
∑
k

∂rk

∂q1

∂rk

∂q2
/
√

g11g22 = g12/
√

g11g22,

which need not be zero.
This is awkward, but things are even worse. The direction specified above

is not, in general, the same as the normal to the contour surface of constant
q1 values, for ẽ2 is tangent to that surface. This awkwardness is handled
in two different ways. In the discussion of curved spaces, as dealt with
in differential geometry and general relativity, one simply drops the idea
of expressing the gradient of a scalar as a vector field expanded in terms
of unit basis vectors. In fact, the gradient of a scalar is considered a 1-
form, dual to rather than the same as a vector field. Forms are discussed
later. In discussing curvilinear coordinates for flat three dimensional space,
it is more appropriate to put a limitation on the kinds of coordinates we
will discuss: we will limit ourselves to systems of coordinates for which the
contour surfaces of different coordinates are orthogonal whereever they cross.
Then their normals, the directions ~∇qi and ~∇qj , are orthogonal for i 6= j.
Such coordinates are called orthogonal curvilinear coordinates. Let us define
in general

gij := ~∇qi · ~∇qj =
∑
k

∂qi

∂rk

∂qj

∂rk
.

Note that gij is not the same as gij. In fact

∑
`

gi`g`j =
∑

`

∑
k

∂qi

∂rk

∂q`

∂rk

∑
m

∂rm

∂q`

∂rm

∂qj
=
∑
km

∂qi

∂rk
δkm

∂rm

∂qj
= δij ,
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so g.. is the inverse matrix to g... For orthogonal curvilinear coordinates, g..

is diagonal, which is true if and only if g.. is diagonal.
As g.. is, in general, a positive definite matrix, if it is diagonal, the diagonal

elements must be positive, so for an orthogonal coordinate system, we can
rewrite gij = h2

i δij , and gij = h−2
i δij . Then the unit vectors are

ẽi = h−1
i

∑
k

êk
∂rk

∂qi
=:
∑
k

Bkiêk (1)

with the inverse relation

êk =
∑

i

hiẽi
∂qi

∂rk
=:
∑

i

Akiẽi =
∑

i

Aki

∑
`

B`iê`. (2)

As the êk are independent, this implies
∑

i AkiB`i = δk` or ABT = 1I.
As the set of basis vectors êk and the set ẽi are each orthonormal, the

matrix Aki = hi∂qi/∂rk which connects them is an orthgonal matrix, and
B = A. This orthogonality can be easily verified as3

∑
k

AkiAkj = hihj

∑
k

(∂qi/∂rk)(∂qj/∂rk) = hihjg
ij = δij .

Thus A can be written two ways,

Aki = hi
∂qi

∂rk
= h−1

i

∂rk

∂qi
.

1.1 Vector Fields

A vector function on space can be expressed in terms of any set of basis vec-
tors we choose, even if we choose different basis vectors at different points,
which is what we are doing in using the ẽi. For example, in spherical coor-
dinates ẽr always points away from the origin, so that the ẽr’s at different
angles are not parallel, and therefore not equal4. The vector itself, at a given

3Note that in the expression hihjg
ij there is no sum (which would usually be implied)

over i and j. The extra hi factors in these expositions in terms of unit vectors do not
neatly fit with the usual relativity summation conventions.

4Notice that we are assuming a notion of “parallel transport” of the vectors which is
built into the definition of Euclidean space, and which says that two vectors are equal if
their components in cartesian coordinates are equal, not if their components in generalized
curvilinear coordinates are equal. In differential geometry one studies intrinsically curved
spaces, in which the simple Euclidean concept of transporting a vector parallel to itself
becomes a much more complicated idea.
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point, is the same regardless of which basis is used to describe it, though its
components are different. Thus

~V =
∑
k

Vkêk =
∑

Ṽiẽi,

with the components in curvilinear coordinates Ṽi determined in terms of the
cartesian coordinates from the connection of the basis vectors,

êk =
∑

i

Akiẽi, Ṽi =
∑
k

VkAki, Vk =
∑

i

AkiṼi.

1.2 Derivatives

The gradient can be rewritten

~∇f =
∑
k

∂f

∂rk
êk =

∑
k`m

∂f̃

∂q`

∂q`

∂rk
hmẽm

∂qm

∂rk
=
∑
`m

∂f̃

∂q`
hmẽmgm`

=
∑
`m

∂f̃

∂q`
hmẽmh−2

m δm` =
∑
m

h−1
m

∂f̃

∂qm
ẽm,

or

~∇f =
∑
m

h−1
m

∂f̃

∂qm
ẽm. (3)

Because we like to think of the function f as the same thing as f̃ , in the
sense that they take the same values at the same physical point, we often
neglect to put the tilde on and write f(q)

1.2.1 Velocity

While not a vector field, the velocity of a particle is still important, and we
need to know how to express it in curvilinear coordinates. We assume the
coordinate system itself is time-independent5. Then by the chain rule, we
have

~v =
∑
k

drk

dt
êk =

∑
k

(∑
i

∂rk

∂qi

dqi

dt

)
∑

j

hj
∂qj

∂rk
ẽj


 =

∑
ij

dqi

dt
hjδij ẽj

=
∑
j

hj
dqj

dt
ẽj .

5Thus we are excluding here a discussion of rotating coordinate systems.
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Note it is hjdqj which has the right dimensions for an infinitesimal length,
while dqj by itself might not.

To consider a particular example, let’s take spherical coordinates. As the
contours of r, θ and φ are spherical shells centered on the origin, cones
with their vertices at the origin, and planes including the z-axis, which
are “obviously” orthogonal6, this is an orthogonal curvilinear coordinate
system. Looking graphically at the lengths spanned by changing one of
the coordinates while keeping the others fixed, and comparing to (ds)2 =
h2

r(dr)2 + h2
θ(dθ)2 + h2

φ(dφ)2, we see that

hr = 1, hθ = r, hφ = r sin θ.

Thus ~v = ṙẽr + rθ̇ẽθ + r sin θφ̇ẽφ and v2 = ṙ2 + r2θ̇2 + r2 sin2 θφ̇2.

1.2.2 Derivatives of vectors

Even in cartesian coordinates, the spatial derivative of a vector field is com-
plicated, as it involves two directions, the direction of partial differentiation
and that of the vector. In curvilinear coordinates it is further complicated
by the fact that the basis vectors are themselves varying from one point to
another. Thus in differentiating the vector we must also take into account
the changes in ẽi, for while in cartesian coordinates

∂êi

∂rj
= 0,

in curvilinear orthogonal coordinates we have

h−1
j

∂

∂qj
ẽi = h−1

j

∑
k`

∂rk

∂qj

∂

∂rk

(
h−1

i ê`
∂r`

∂qi

)
= h−1

j

∑
k`

∂rk

∂qj

∂A`i

∂rk
ê`

=
∑
k`

Akj
∂A`i

∂rk
ê`.

We see that the expression is not transparent, and in fact we shall find a
simpler expression by considering differential forms.

6If this is not obvious, you can laboriously calculate ~∇r · ~∇θ, etc.
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1.3 Vector fields and forms

One way of thinking about vector fields in Euclidean space is in terms of
differential forms, in particular 1-forms. An arbitrary 1-form on R

3 can be
written in terms of the basis 1-forms dqi as ω =

∑
i Aidqi, but if we are

using orthogonal curvilinear coordinates to describe Euclidean space, it is
more common to write the coordinates as multipliers of the normalized7 1-
forms ωi = hidqi, so ω =

∑
i Aidqi =

∑
i Ṽiωi. We may associate the vector

~V with the one form ω if they have the same Ṽ ’s. Note that if ω = df =∑
i(∂f/∂qi)dqi =

∑
i h

−1
i (∂f/∂qi)ωi, we see (Eq. 3) that the associated vector

is V = ~∇f , the gradient of f .
In three dimensional space, a 2-form can also be associated with a vector,

because an arbitrary two form ω(2) = 1
2

∑
ij Bijωi∧ωj can be associated with

the vector ~B whose coefficients B̃i = 1
2

∑
jk εijkBjk, and Bjk =

∑
i εijkB̃i.

Notice that if ~V is associated with ω(1) and ω(2) = dω(1),

ω(2) =
1

2

∑
ij

Bijωi ∧ ωj = d(
∑

i

Ṽihidqi) =
∑
ij

∂(Ṽihi)

∂qj
dqj ∧ dqi

=
∑
ij

h−1
i h−1

j

∂(Ṽihi)

∂qj
ωj ∧ ωi,

so, using the antisymmetry of ωj ∧ ωi, we see that

1

2
Bij =

1

2
h−1

i h−1
j

(
∂(Ṽjhj)

∂qi
− ∂(Ṽihi)

∂qj

)
=

1

2

∑
k

εijkB̃k

or

B̃k =
1

2

∑
ij

εijk
1

hihj

(
∂

∂qi
Ṽjhj − ∂

∂qj
Ṽihi

)
=
∑
ij

εijk
1

hihj

∂

∂qi

(
Ṽjhj

)
.

If the qi are cartesian coordinates all the hi = 1 and we recognize ~B = ~∇× ~V ,
which is a coordinate independent statement, so we have derived the formula
for a curl in general orthogonal curvilinear coordinates.

7When we write vectors and forms in terms of dqi or ∂i = ∂/∂qi, the up-or-down
placement of indices is significant, but when we use normalized basis vectors this becomes
unclear, and we could have written ωi just as well.
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Finally we ask what happens if we apply the exterior derivative operator
d to the 2-form associated with a vector ~B,

d


1

2

∑
ijk

εijkB̃iωj ∧ ωk


 = d


1

2

∑
ijk

εijkB̃ihjhkdqj ∧ dqk




=
1

2

∑
ijk

εijk
∂(B̃ihjhk)

∂qi
dqi ∧ dqj ∧ dqk

=
1

2

∑
ijk

εijk
1

hihjhk

∂(B̃ihjhk)

∂qi
ωi ∧ ωj ∧ ωk

=
1

h1h2h3

∂

∂qi

(
B̃i

h1h2h3

hi

)
ω1 ∧ ω2 ∧ ω3.

A 3-form ω(3) can be associated with a scalar function f by

ω(3) = fdr1 ∧ dr2 ∧ dr3 =
1

6
f
∑
abc

εabcdra ∧ drb ∧ drc

=
1

6
f
∑

abcijk

εabc
∂ra

∂qi

∂rb

∂qj

∂rc

∂qk
dqi ∧ dqj ∧ dqk

=
1

6
f
∑

abcijk

εabc

(
h−1

i

∂ra

∂qi

)(
h−1

j

∂rb

∂qj

)(
h−1

k

∂rc

∂qk

)
ωi ∧ ωj ∧ ωk

=
1

6
f det A

∑
ijk

εijkωi ∧ ωj ∧ ωk

= f det A ω1 ∧ ω2 ∧ ω3

= f ω1 ∧ ω2 ∧ ω3,

where in the last step we assumed the curvilinear coordinates were ordered
so that ẽ1 × ẽ2 = +ẽ3, or equivalently that A is not only orthogonal but also
has determinant +1.

Examining the function associated with ω(3) = dω(2) using cartesian co-
ordinates qi, we see that f =

∑
i ∂B̃i/∂qi = ~∇· ~B, and as this is a coordinate

independent statement, we see that for general orthogonal curvilinear coor-
dinates

~∇ · ~B =
1

h1h2h3

∑
i

∂

∂qi

(
h1h2h3

hi
B̃i

)
.



504: Lecture 4 Last Latexed: January 28, 2010 at 22:39 9

Finally, we can evaluate the Laplacian on a scalar,

f = ∇2Φ = ~∇ · ~∇Φ =
1

h1h2h3

∑
i

∂

∂qi

(
h1h2h3

hi
h−1

i

∂Φ

∂qi

)

=
1

h1h2h3

∑
i

∂

∂qi

(
h1h2h3

h2
i

∂Φ

∂qi

)

This last operator maps a scalar into a scalar, and is therefore independent
of worries about establishing unit vectors for the curvilinear coordinates.
Thus there is a more general form,

∇2 =
1√
g

∑
ij

∂

∂qi
gij√g

∂

∂qj
,

where g := det g... This form holds for any coordinate system in a Rieman-
nian space, not just orthogonal curvilinear coordinates in Euclidean space.

Applying the above to spherical coordinates, we have

~∇f =
∂f

∂r
ẽr +

1

r

∂f

∂θ
ẽθ +

1

r sin θ

∂f

∂φ
ẽφ,

~∇× ~V =
1

r2 sin θ

(
∂

∂θ
r sin θVφ − ∂

∂φ
rVθ

)
ẽr

+
1

r sin θ

(
∂

∂φ
Vr − ∂

∂r
r sin θVφ

)
ẽθ

+
1

r

(
∂

∂r
rVθ − ∂

∂θ
Vr

)
ẽφ

=
1

r sin θ

[
∂

∂θ
(sin θVφ)− ∂

∂φ
Vθ

]
ẽr

+

[
1

r sin θ

∂

∂φ
Vr − 1

r

∂

∂r
(rVφ)

]
ẽθ

+
1

r

[
∂

∂r
(rVθ)− ∂

∂θ
Vr

]
ẽφ,

~∇ · ~B =
1

r2 sin θ

(
∂

∂r

(
r2 sin θB̃r

)
+

∂

∂θ

(
r sin θB̃θ

)
+

∂

∂φ

(
rB̃φ

))
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=
1

r2

∂

∂r

(
r2B̃r

)
+

1

r sin θ

∂

∂θ

(
sin θB̃θ

)
+

1

r sin θ

∂

∂φ
B̃φ

∇2Φ =
1

r2 sin θ

(
∂

∂r
r2 sin θ

∂Φ

∂r
+

∂

∂θ
sin θ

∂Φ

∂θ
+

∂

∂φ

1

sin θ

∂Φ

∂φ

)

=
1

r2

∂

∂r

(
r2∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
.


