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Last time we discussed a small scatterer at origin.
Interesting effects come from many small scatterers
occupying a region of size d large compared to λ. The
scatterer j at position ~xj has an ~Einc with an extra factor
of eikn̂i·~xj , and in the scattered wave, ~r needs to be
replaced by ~r − ~xj . Assuming
we are observing from far away,
|~r| � d, the variations of the r
in the denominator or the r̂’s are
not important, but the effect in
the oscillating exponential is, and
we should approximate

x
j

x
j

x
j

r

r
n
i

r

eik|~r−~xj | ≈ eikre−ikr̂·~xj

So the amplitude for the scattered wave due to j has an
extra factor of

eikn̂i·~xj−ikr̂·~xj = ei~q·~xj , with ~q = k(n̂i − r̂).
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The amplitudes for all the scatterers need to be added
before squaring to find the flux, so we have

dσ

dΩ
=

k4

(4πε0Ei)2

∣∣∣∣∣∣
∑
j

[~ε ∗ · ~pj + (r̂ × ~ε ∗) · ~mj/c] ei~q·~xj

∣∣∣∣∣∣
2

.

If all the scatterers react the same way, pj and mj can be
factored out of the sum, and we appear to have a single
scatterer with a structure factor

F(~q) =

∣∣∣∣∣∣
∑
j

ei~q·~xj

∣∣∣∣∣∣
2

=
∑
j

∑
j′

ei~q·(~xj−~xj′ ).

The nature of F(~q) depends on how the scatterers are
distributed.
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Structure Factor

I Large number of randomly positioned scatterers:
phases random — superposition incoherent.
Only the terms with i = j contribute, F(~q) = N ,
except for ~q = 0. Coherent scattering ≈ N2, so
incoherent scattering is very faint.

I Crystaline structure: with a regular array we can get
even less scattering.
Consider a one dimensional array of N scatterers
each displaced by ~a from the previous.

F(~q) =

∣∣∣∣∣∣
N−1∑
j=0

eij~q·~a

∣∣∣∣∣∣
2

=
∣∣∣∣1− eiN~q·~a1− ei~q·~a

∣∣∣∣2 =N2 sin2(N~q · ~a/2)
(N sin(~q · ~a/2))2

.

For lattice spacings a� λ but total extent Na� λ,
the fraction is (sinx/x)2 for x = N~q · ~a/2. x� 1 and
(sinx/x)2 � 1 unless ~q · ~a is comparable or smaller
than 1/N .
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So except for forward scattering, we have destructive
interference.
In three dimensions, the same thing happens unless the
Bragg condition holds for some pair of scatterers,
~q · ~d = 2nπ for some ~d the separation between two
scatterers, not too far apart. In that case there will be
some fraction of N interfering constructively, and the
structure factor will be proportional to N2. But if the
lattice spacing is much less than λ, this will happen only
for forward scattering.
So a perfect crystal with a� λ is ≈ uniform material with
permittivity ε̄ and permeability µ̄, without scattering.
But suppose small fluctuations,

ε = ε̄+ δε(~x),
µ = µ̄+ δµ(~x).
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Applying Maxwell
Maxwell in medium but without sources applies:
As ~∇ · ~D = 0,

∇2 ~D = = ∇2 ~D − ~∇
(
~∇ · ~D

)
= −~∇×

(
~∇× ~D

)
= −~∇×

(
~∇× ( ~D − ε̄E

)
− ε̄~∇×

(
~∇× ~E

)
︸ ︷︷ ︸
−∂

~B

∂t

.

last term: ε̄ ~∇× ∂ ~B

∂t
= ε̄

∂

∂t
~∇×

(
~B − µ̄ ~H

)
+ ε̄µ̄

∂

∂t
~∇× ~H︸ ︷︷ ︸

∂ ~D
∂t

So altogether,

∇2 ~D−ε̄µ̄∂
2 ~D

∂t2
= −~∇×

(
~∇× ( ~D − ε̄E

)
+ε̄

∂

∂t
~∇×
(
~B − µ̄ ~H

)
.

(1)
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This equation is exact. Good approximations: δε, δµ
small, treat to first order, as sources. Can treat full field
~D as harmonic, ∝ e−iωt so ~D satisfies inhomogeneous
Helmholtz equation with k2 := µ̄ε̄ω2, and all fields
perturbations on an incident plane wave

~Dinc(~x) = ~Die
ik~ni·~x

~Binc(~x) =

√
µ̄

ε̄
~ni × ~Dinc(~x),

the fields in the source term, to first order in the
variations, will be

~D − ε̄E =
δε(~x)
ε̄

~Dinc(~x)

~B − µ̄H =
δµ(~x)
µ̄

~Binc(~x)
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the correction will then be the scattered wave given by
the Green’s function

~D − ~Dinc =
1

4π

∫
d3x′

eik|~x−~x
′|

|~x− ~x ′|

×

{
1
ε̄
~∇ ′ × ~∇ ′ ×

(
δε(~x ′) ~Dinc(~x ′)

)
+
iε̄ω

µ̄
~∇ ′ ×

(
δµ(~x ′) ~Binc(~x ′)

)}

Integration by parts: Note1
∫
V
~∇× ~A =

∫
S ~n× ~A→ 0 if ~A

vanishes sufficiently at infinity, and therefore∫
V d

3x′f(~x ′)~∇ ′ × ~A(~x ′) ∼ −
∫
V d

3x′
(
~∇ ′f(~x ′)

)
× ~A(~x ′).

For the ~Binc term, f(~x ′) is the Green function,

~∇ ′ e
ik|~x ′−~x|

|~x ′ − ~x|
= −~Re

ikR

R3
[ikR− 1] , with ~R = ~x− ~x ′

1See lecture notes
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For the ~Dinc term, we also need∫
V
d3x′f(~x ′)~∇ ′ × ~∇ ′ × ~A(~x ′)

=
∫
V
d3x′f(~x ′)

(
~∇ ′
[
~∇ ′ · ~A(~x ′)

]
−∇′ 2 ~A

)
∼ −

∫
V
d3x′

(
~∇ ′f(~x ′)

)
~∇ ′ · ~A(~x ′)

−
∫
V
d3x′ ~A(~x ′)∇′ 2f(~x ′)

∼ +
∫
V
d3x′ ~A(~x ′) · ~∇ ′

(
~∇ ′f(~x ′)

)
−
∫
V
d3x′ ~A(~x ′)∇′ 2f(~x ′).

Again f(~x ′) = eik|~x
′−~x|/|~x ′ − ~x| is the Green’s function for

∇2 + k2, so for the second term, outside the region of
scattering (where we can ignore the δ(~x− ~x ′) term) we
have k2

∫
V d

3x′ ~A(~x ′)eik|~x
′−~x|/|~x ′ − ~x|.
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For large r, we have

eik|~x
′−~x| = eikre−ikr̂·~x

′
,

1
|~x ′ − ~x|

≈ 1/r,

~∇ ′f = − ik
r
r̂eikre−ikr̂·~x

′
, and(

~A · ~∇ ′
)(

~∇ ′f
)

= −k
2

r
r̂ · ~Ar̂eikre−ikr̂·~x ′

.

So altogether

~D = ~Dinc +
eikr

r
~Asc,

where

~Asc =
k2

4π

∫
d3x′e−ikr̂·~x

′
{
δε(~x ′)
ε̄

(
r̂ × ~Dinc(~x ′)

)
× r̂

− ε̄ω
k

δµ(~x ′)
µ̄

r̂ × ~Binc(~x ′)
}
.
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The differential cross section for light with polarization ~ε
is

dσ

dΩ
=

∣∣∣~ε ∗ · ~Asc
∣∣∣2∣∣∣ ~Dinc

∣∣∣2
=

[
k2

4π

∫
d3x′ei~q·~x

′

{
~ε ∗ · ~εi

δε(~x ′)
ε̄
− δµ(~x ′)

µ̄
(~ε ∗ × r̂) · (n̂i × ~εi)

}]2

,

with ~q = k(n̂i − r̂).
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Blue Sky

Our first application is to consider molecules in a dilute
gas as a fluctuation in ε from the vacuum at a point. With
an induced dipole moment ~pj = ε0γmol ~E(~xj) we have

δε = ε0
∑
j

γmolδ(~x− ~xj)

and we assume no magnetic moments, so δµ = 0. Then

dσ

dΩ
=

k4

16π2
|γmol|

2 |~ε ∗ · ~εi|2F(~q)

where for a dilute gas we have an incoherent sum and
F(~q) is the number of scattering molecules, except for
~q = 0, the forward direction.
For the dilute gas as a whole the dielectric constant
εr = ε/ε0 = 1 +Nγmol, where N is the number density of
molecules.
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The total scattering cross section per molecule is then

σ =
k4

16π2N2
|εr − 1|2

∑
~ε

∫
dΩ |~ε ∗ × ~εi|2

The polarization factor is∑
~ε (~εi ∗ · ~ε ) (~ε ∗ · ~εi) = 1− |r̂ · ~εi|2, as

∑
~ε~εj~ε

∗
k + r̂j r̂k = δjk.

Consider light incident in the z direction with ~εi = x̂, so
r̂ · ~ε = sin θ cosφ, and the integral∫
dΩ |~ε ∗ × ~εi|2 =

∫ π

0
sin θdθ

∫ 2π

0
dφ(1−sin2 θ cos2 φ) = 8π/3,

and

σ =
k4

6πN2
|εr − 1|2 =

k4

6πN2

∣∣n2 − 1
∣∣2 ≈ 2k4

3πN2
|n− 1|2

where n =
√
εr is assumed to deviate only slightly from 1.
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The intensity of the beam I(z) = I(0)e−αz falls
exponentially with distance with the attenuation
coefficient α due to the scattering. In a slice of width dz,
there are Ndz scatterers per unit area, each scattering an
area σ of the beam, so there is a fractional loss of Nσdz
in distance dz, and

α = Nσ ≈ 2k4

3πN
|n− 1|2 .

This is Rayleigh scattering. Note that it is a method of
determining the number of molecules, so an approach
which was used historically to determine Avagadro’s
number.
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Critical Opalescence

In the previous discussion we assumed no corrolation in
the positions of the scatterers. This is not a good
approximation in denser fluids. A better approximation is
to consider ε̄ to be the mean permittivity of the fluid but
take into account density fluctuations. From the
Clausius-Mossotti relation (J4.70) we have

εr =
3 + 2Nγmol
3−Nγmol

=⇒ dεr
dN

=
9γmol

(3−Nγmol)2
=

(εr−1)(εr+2)
3N

,

so the variation of ε in a region of fluid with varying
density is

δε

ε0
=

(εr − 1)(εr + 2)
3N

δN.

How do we evaluate δN?
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In a fluid in equilibrium with a reservoir at constant
pressure and temperature, the probability that a given
piece of fluid occupies a volume V is exp−G(V )/kBT ,
where G is the Gibbs free energy and kB is Boltzmann’s
constant.
In terms of the2 isothermal compressibility

βT = − 1
V

(
∂V

∂p

)
T

=
(
V
∂2G

∂V 2

)−1

,

the mean square deviation of 〈(∆V )2〉 = kBT 〈V 〉βT , and

〈(∆N)2〉 = kBT 〈N2/V 〉βT .

2See Reif, p300
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So the total (for all the particles in the volume)
differential cross section is

NV

〈
dσ

dΩ

〉
=

k4

16π2
|~ε ∗ · ~εi|2

〈∣∣∣∣∫ d3xei~q·~x
δε(~x)
ε̄

∣∣∣∣2
〉

=
k4

16π2
|~ε ∗ · ~εi|2

∣∣∣∣εr − 1)(εr + 2)
3Nεr

∣∣∣∣2
×
∫
d3x

∫
d3x′ei~q·(~x−~x

′)〈δN(~x)δN(~x ′)〉.

If we assume the correlation length for density
fluctuations is much less than the wavelength, we may
take ei~q·(~x−~x

′) ≈ 1 and the integrals give
V 〈(δN)2〉 = N2kBTβT .



Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Multiple
Scatterers

Blue Sky

Critical
Opalescence

As for the blue sky, the attenuation coefficient is just
α = Nσ and the angular integral is∫
dΩ
∑
~ε |~ε
∗ · ~εi|2 = 8π/3, so

α =
k4

6πN

∣∣∣∣(εr − 1)(εr + 2)
3εr

∣∣∣∣2NkBTβT
=

ω4

6πNc4

∣∣∣∣(εr − 1)(εr + 2)
3

∣∣∣∣2NkBTβT .
The most important feature of this is that at the critical
point the compressibility βT blows up, so the fluid
becomes opalescent.

I am going to skip the sections on diffraction. This has
been or is covered in our optics courses.
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