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Fiber Optics
Waves can be guided not only by conductors, but by
dielectrics. Fiber optics cable of silica has n(r) varying
with radius.
Simplest: core radius a with
n = n1, surrounded (radius
b) with n = n0 < n1.
Total internal reflection if

α > αc = sin−1(n0/n1)

α αθ
b

a

Equivalently θ < θmax = cos−1(n0/n1).
This is geometrical optics. Needs λ� a.

Two kinds of fibers:
I multimode, a� λ, treat with geometrical optics.

Typically a ≈ 25 µm, b ≈ 75 µm, λ ∼ 0.85 µm.
I single mode, a ∼ λ, treat as wave guide. Typically

a ≈ 2 µm.
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Multimode fibers

Define ∆ =
n2

1 − n2
0

2n2
1

≈ 1− n0

n1
, typically about 0.01.

cos θmax ≈ 1− 1
2θ2

max = 1−∆, so θmax ≈
√

2∆.
How many modes can propagate?
Uncertainty principle: only one mode can fit per unit

“volume” in phase space, N =
∫ (

dpdq

2π~

)D

for each

mode in D dimensions. Here D = 2, the cross section has
coordinate integral

∫
d2q = πa2. As

|~k⊥| ≤ kz tan θmax = kz

√
2∆,∫

d2p = ~
2
∫

d2k = 2π~
2k2

z∆. There are two polarizations,
so

N = 2
1

(2π)2
(
πa2

) (
2πk2

z∆
)

=
1
2
V 2,

whereV := ka
√

2∆ is called the fiber parameter.
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Problem with simple fiber

At each angle θ < θmax, light travels indefinitely down
the fiber. But to go a large distance L down the fiber,

θ

it travels a different distance L sec θ, so light from
different θ’s arrive with different phases, and interfere!
Fix: make several transitions
to lower n. In fact, for home-
work (Jackson 8.14) you will
find a “perfect” fix, using n
varying continuously with ra-
dius.

θ
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n(x) varying with radius x
Consider dielectric with ε(~x) varying smoothly, µ = µ0 as
silica is not magnetic. Assume single frequency ω.
Maxwell gives

~∇ · ε ~E = 0 =
(

~∇ε
)
· ~E + ε~∇ · ~E

~∇× ~E = −µ0
∂ ~H

∂t
= iµ0ω ~H

~∇× ~H =
∂ε ~E

∂t
= −iωε ~E

~∇ · ~H = 0.

So
~∇×

(
~∇× ~E

)
= −∇2 ~E + ~∇

(
~∇ · ~E

)
= iµ0ω~∇× ~H

= µ0ω
2ε ~E

= −∇2 ~E − ~∇
(

1
ε

(
~∇ε

)
· ~E

)
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The same for H:
~∇×

(
~∇× ~H

)
= −∇2 ~H + ~∇

(
~∇ · ~H

)
= −iω~∇×

(
ε ~E

)
−∇2 ~H = −iω

(
~∇ε

)
× ~E − iωε~∇× ~E

= −iω
(
~∇ε

)
× ~E + µ0ω

2ε ~H.

Thus ∇2 ~E + µ0ω
2ε ~E + ~∇

(
1
ε

(
~∇ε

)
· ~E

)
= 0

∇2 ~H + µ0ω
2ε ~H − iω

(
~∇ε

)
× ~E = 0

Assume ε varies slowly compared to λ,

∇ε� ε

λ
=
εω

c
.

Other terms are ω2/c2 times E or H, but ∇ε terms are
∇ε/ελ times E, � λ2 = ω2/c2, so they can be ignored.
Both ~E and ~H satisfy(

∇2 +
ω2

c2
n2(~r)

)
ψ(~r) = 0.
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Eikonal

ψ oscillates rapidly (on scale ∼ λ). Take this away by
defining the eikonal S(~r), with

ψ(~r) = eiωS(~r)/c

so ∇2ψ = ~∇ ·
(
iω

c
~∇SeiωS(~r)/c

)

=
[
iω

c
∇2S − i

(ω
c

)2 (
~∇S

)2
]
eiωS(~r)/c

= −(ω2n2/c2)eiωS/c

and n2(~r)− ~∇S · ~∇S = −i c
ω
∇2S. Now c/ω ∼ λ while ∇S

varies with n(~r), much more slowly, so we can set the r.h.s
to zero, for the
Eikonal approximation: ~∇S · ~∇S = n2(~r).
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The Eikonal approximation: ~∇S · ~∇S = n2(~r)
doesn’t give the direction S changes, but does give the
rate.
Define k̂(~r) so ~∇S = n(~r)k̂(~r). Near a point r0,

ψ(~r) ≈ e
iω

(
S(~r0) + (~r − ~r0) · ~∇S

)
/c

= eiωS(~r0)/c eiωk̂ · (~r − ~r0)n(~r)/c,

so it is locally a plane wave with |~k| = ωn(~r)/c.
Consider an integral curve, that is, a ray following ~∇S,
and let s be the distance along that curve. Then
d~r/ds = k̂, n(~r)d~r/ds = ~∇S, so

d

ds

(
n(~r)

d~r

ds

)
=

d

ds
~∇S = ~∇ dS

ds

∣∣∣∣
Γ

= ~∇n(~r). (1)

Meridional rays pass through axis (m = 0 as waves)
skew rays do not, travel helically (m 6= 0 modes).
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We will treat only meridional, effectively in xz plane, with
x a radial direction and z along the fiber. We assume
n(~r) = n(x) independent of z.
Take x and z components of

(1) :
d

ds

(
n(~r)

d~r

ds

)
= ~∇n(~r)

d

ds
(n(x) sin θ) =

dn(x)
dx

,
d

ds
(n(x) cos θ) =

dn(~r)
dz

= 0.

So n(x) cos θ = constant. With θ(0) < θmax ray reaches a
maximum radius xmax with n̄ := n(0) cos θ(0) = n(xmax).

dz

ds
= cos θ =

n̄

n(x)
,

d

ds
=

n̄

n(x)
d

dz
,

so the x component of (1) gives

dn

dx
=

n̄

n(x)
d

dz

(
n(x)

n̄

n(x)
dx

dz

)
=

n̄

n(x)
d

dz

(
n̄

dx

dz

)
,

so n̄2 d2x

dz2
= n(x)

dn(x)
dx

=
1
2

d

dx
n2(x).
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n̄2 d2x

dz2
=

1
2

d

dx
n2(x)

Looks like ma = −dV/dx with potential −1
2n2(x) and

time z, so as for Newton, multiply by “velocity” dx/dz, to
get

1
2
n̄2 d

dz

(
dx

dz

)2

=
1
2

d

dz
n2(x) =⇒ n̄2

(
dx

dz

)2

︸ ︷︷ ︸
=0 at xmax

= n2(x)−n̄2.

The distance travelled along z in getting from the axis to
x is

z(x) =
∫ x

0

dz

dx
dx = n̄

∫ x

0

dx√
n2(x)− n̄2

,

and the distance from one axis crossing to the next is

Z = 2n̄

∫ xmax

0

dx√
n2(x)− n̄2

.
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The optical distance
∫

n(x)ds between axis crossings is

Lopt = 2
∫ xmax

0
n(x)

ds

dz

dz

dx
dx

= 2
∫ xmax

0
n(x)

n(x)
n̄

n̄√
n2(x)− n̄2

dx

= 2
∫ xmax

0

n2(x)√
n2(x)− n̄2

dx.

Over a long distance L, many axis crossings (L/Z), total

phase change is proportional to L
Lopt

Z . It is ideal if
Lopt

Z
is independent of n̄, for otherwise different rays will
destructively interfere.
You will find the ideal in problem 8.14.
Signals will also degrade with distance if there is
dispersion over the bandwidth of the signal. There is also
some absorption in real dielectrics. These two issues for
silica favor using λ ∼ 1.4µm.
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We will not cover single-mode fibers, or normal modes in
fibers. So we are skipping section 8.11.

Now we will discuss sources of electromagnetic fields in
conducting waveguides.

Next time, we will begin discussing sources more
generally, We will first cover spherical waves of Jackson
§9.6, and then come back to the beginning of chapter 9.
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Sources of Waves in Wave Guides

We discussed waves propagation without sources in
waveguides. Now consider a given distribution of charges
and currents in a localized region of the waveguide. We
assume the charge motion is otherwise determined,
ignoring back reaction of the fields on the charges.

Then Maxwell’s equations are still linear (inhomogeneous)
in the fields, with boundary conditions still
time-independent, so fourier transform in time will give
frequency components independently in terms of
frequency components of the source distribution.

Away from the sources, waves as before, with the general
fields superpositions of normal modes with z dependence
given by

k = ±
√

ω2/c2 − γ2
λ.
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k = ±
√

ω2/c2 − γ2
λ.

We need to consider not only right-moving (k real, > 0)
and left-moving (k real, k < 0) modes, but also the
damped modes, ω < cγλ, with k imaginary. Far from the
sources, only the real k modes will matter, but we need
all modes for a complete set of states.

Expand our fields in normal modes, indexed by λ, which
includes a type (TE or TM or TEM) as well as indices
(“quantum numbers”) defining the mode. Each mode λ
has two k values,
a “positive” one, k > 0 real, or k imaginary, Im k > 0, and
a “negative” one, k < 0 real, or k imaginary, Im k < 0.
For each λ let kλ be the “positive” value (i.e. positive real
or imaginary with positive imaginary part.)
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For the positive mode part of the fields, we have

~E+
λ (x, y, z) =

[
~Eλ(x, y) + ẑEz λ(x, y)

]
eikλz

~H+
λ (x, y, z) =

[
~Hλ(x, y) + ẑHz λ(x, y)

]
eikλz

where ~Eλ(x, y) and ~Hλ(x, y) are purely transverse, and are
determined by Ez and Hz as in lecture 6 (Jackson 8.26).

The negative modes are found by z ↔ −z, which involves
a parity transformation, under which Ez changes sign but
the transverse part doesn’t. But the magnetic field is a
pseudovector, so under parity it behaves the opposite way,
and Hz doesn’t change sign but ~H(x, y) does. Thus

~E−λ (x, y, z) =
[
~Eλ(x, y)− ẑEz λ(x, y)

]
e−ikλz

~H−
λ (x, y, z) =

[
− ~Hλ(x, y) + ẑHz λ(x, y)

]
e−ikλz
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The normal modes are determined by solutions of the
Helmholtz equation

(∇2
t + γ2

λ

)
ψ = 0, with ψ|Γ = 0 for

TM modes or Neumann conditions on Γ for the TE
modes. With two more indices, λTM

mn give a complete set of
functions on the cross section with ψ|Γ = 0, and λTE

mn give
a complete set of functions on the cross section with
∂ψ
∂n

∣∣∣
Γ

= 0.

Note that if ψλ and ψµ are solutions to
(∇2

t + γ2
)
ψ = 0

with γ = γλ and γ = γµ respectively,∫
A

(
~∇tψλ

)
·
(
~∇tψµ

)
=

∫
A

[
~∇t ·

(
ψλ~∇tψµ

)
− ψλ∇2ψ

]

=
∫

Γ
ψλ
∂ψµ
∂n

−
∫
A
ψλ∇2

tψµ

= 0 + γ2
λ

∫
A
ψλψµ

where the vanishing of the
∫
Γ holds if ψλ satisfies

Dirichlet boundary conditions ψλ|Γ = 0 or ψµ satisfies
Neumann conditions ∂ψµ/∂n|Γ = 0.
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Reversing µ↔ λ, we see that if both satisfy the same
condition,∫

A

(
~∇tψλ

)
·
(
~∇tψµ

)
= γ2

λ

∫
A
ψλψµ = γ2

µ

∫
A
ψλψµ,

so if γλ 6= γµ,
∫
A ψλψµ = 0. If there are several solutions

with the same γ, with γ2 real, we may choose them all to
be real (or have the same phase), in which case

∫
A ψλψµ is

a real symmetric matrix which can be diagonalized, so we
may choose basis functions ψλ to be orthonormal under
integration over A.
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It is convenient to chose the basis functions so that the
transverse electric field (at z = 0) is real and normalized.
For TM modes, ~E = i

(
kλ/γ

2
λ

)
~∇tψ, Ez = ψ, so we chose ψ

to be imaginary for kλ real and real for kλ imaginary, with
∫

A
ψλψµ = −γ

2
λ

k2
λ

δλµ.

Then ∫
A

~Eλ · ~Eµ =
kλkµ

γ2
λγ

2
µ

∫
A

(
~∇tψλ

)
·
(
~∇tψµ

)

=
kλkµ

γ2
λγ

2
µ

(
γ2

λ

∫
A
ψλψµ

)

=
kλkµ

γ2
µ

(−γ2
λ

k2
λ

)
δλµ = δλµ.

Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Fiber Optics

Multimode
fibers

Analysis with
varying n

Eikonal

Sources in
Wave Guides

Expansion in
Normal Modes

Normalizing
the Normal
Modes

Example:
Rectangular
WG

Localized
Sources

For TE modes, ~Hλ = i
(
kλ/γ

2
λ

)
~∇tψλ = 1

Zλ
ẑ × ~E, where

Zλ = Z0k/kλ, k := ω/c. Here we choose ψ imaginary (as
kλZλ is real) with

∫
A
ψλψµ =

∫
A
HzλHzµ = − γ2

λ

k2
λZ

2
λ

δλµ.

Then for two TE modes∫
A

~Eλ · ~Eµ = −kλkµZλZµ

γ2
λγ

2
µ

∫
A

(
~∇tψλ

)
·
(
~∇tψµ

)

=
kλkµ

γ2
λγ

2
µ

(∫
Γ
ψλ
∂ψµ

∂n
−

∫
A
ψλ∇2

tψµ

)

=
kλkµ

γ2
λγ

2
µ

(
0 + γ2

λ

∫
A
ψλψµ

)

=
kλkµ

γ2
µ

−γ2
λ

k2
λ

δλµ = δλµ.
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Finally, suppose λ is a TM mode with
~Eλ = i

(
kλ/γ

2
λ

)
~∇tψλ, and µ is a TE mode, with

~Eµ = −i (kµZµ/γ
2
µ

)
ẑ × ~∇tψµ. Then

∫
A

~Eλ · ~Eµ =
kλkµZµ

γ2
λγ

2
µ

∫
A

(
~∇tψλ

)
·
(
ẑ × ~∇tψµ

)

= −kλkµZµ

γ2
λγ

2
µ

ẑ ·
∫

A

(
~∇tψλ

)
×

(
~∇tψµ

)

The integral∫
A

(
~∇tψλ

)
×

(
~∇tψµ

)
=

∫
A

~∇t ×
(
ψλ
~∇tψµ

)

=
∫

Γ
ψλ

(
~∇tψµ

)
· d` = 0

by Stokes theorem and the fact that ψλ vanishes on the
boundary.
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Thus we have shown (or chosen) that the transverse
electric fields for the normal modes satisfy∫

A

~Eλ · ~Eµ = δλµ

for all the modes, TE and TM.

As we have shown
∫

A

~Eλ · ~Eµ = δλµ, and as

~Hλ = Z−1
λ ẑ × ~Eλ, we have

∫
A

~Hλ · ~Hµ =
1

Z2
λ

δλµ, and in

calculating the time average power flow
〈P 〉 = 1

2

∫
A

(
~E × ~H

)
· ẑ to the right, we can use

∫
A

(
~Eλ × ~Hµ

)
· ẑ =

1
Zλ

δλµ
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For a rectangular wave guide

If the cross section is (0 ≤ x ≤ a)× (0 ≤ y ≤ b), the
equation separates in x and y, modes are labelled by
integers m and n, the number of half wavelengths in each
direction, and

TM waves: ψ|S = 0

Ez mn = ψ =
−2iγmn

kλ

√
ab

sin
(mπx

a

)
sin

(nπy
b

)
,

Ex mn =
2πm

γmna
√
ab

cos
(mπx

a

)
sin

(nπy
b

)
,

Ey mn =
2πn

γmnb
√
ab

sin
(mπx

a

)
cos

(nπy
b

)
,
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TE waves: ∂ψ
∂n

∣∣∣
S

= 0

Hz mn = ψ =
−2iγmn
kλZλ

√
ab

cos
(mπx

a

)
cos

(nπy
b

)
,

Exmn =
−2πn

γmnb
√
ab

cos
(mπx

a

)
sin

(nπy
b

)
,

Eymn =
2πm

γmna
√
ab

sin
(mπx

a

)
cos

(nπy
b

)
,

where

γ2
mn = π2

(
m2

a2
+
n2

b2

)
.

The overall constants are determined from the
normalization

∫
AE

2
x + E2

y = 1, except that for TE modes,
we need an extra factor of 1/

√
2 for each n or m which is

zero, as
∫

cos2(mπx/a) = a(1 + δm0)/2.
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Expansion of Free Waves

Except where there are sources, the fields are an
expansion in terms of normal modes, divided into positive
and negative components:

~E = ~E+ + ~E−, ~H = ~H+ + ~H−,

with
E± =

∑
λ

A±λ ~E±λ , H± =
∑

λ

A±λ ~H±
λ ,

Coefficients A±λ are uniquely determined by transverse ~E

and ~H along any cross section. For example, at z = 0 ~E
has expansion coefficients A+

λ + A−λ while ~H has
coefficients A+

λ −A−λ . From the orthonormality properties
we find

A±λ =
1
2

∫
A

~E · ~Eλ ± Z2
λ

~H · ~Hλ.
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Now consider a source ~J(~x)e−iωt

confined to some region z ∈
[z−, z+]. Consider cross sections
S− and S+, with all sources be-
tween them.

−
S+S z

so at S+ there is no amplitude for any mode with
negative k or with −i|k|, which would represent
left-moving waves or exponential blow up (as z → +∞).
The reverse is true at S−, so

~E =
∑
λ′

A+
λ′

~E+
λ′ ,

~H =
∑
λ′

A+
λ′

~H+
λ′ at S+

~E =
∑
λ′

A−λ′ ~E
−
λ′ ,

~H =
∑
λ′

A−λ′ ~H
−
λ′ at S−
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In between, we have the full Maxwell equations (with
sources),

~∇× ~E = −∂ ~B

∂t
= iωµ0

~H, ~∇× ~H = ~J+ε0
∂ ~E

∂t
= ~J−iωε0 ~E,

while the normal modes obey Maxwell equations without
sources:

~∇× ~H±
λ = −iωε0 ~E±λ , ~∇× ~E±λ = iωµ0

~H±
λ .

If we apply the identity
~∇ ·

(
~A× ~B

)
=

(
~∇× ~A

)
· ~B − ~A ·

(
~∇× ~B

)
, we find

~∇ ·
(

~E × ~H±
λ − ~E±λ × ~H

)
=

(
~∇× ~E

)
· ~H±

λ − ~E ·
(

~∇× ~H±
λ

)
−

(
~∇× ~E±λ

)
· ~H + ~E±λ ·

(
~∇× ~H

)
= iωµ0

~H · ~H±
λ + iωε0 ~E · ~E±λ − iωµ0

~H±
λ · ~H

+ ~E±λ ·
(

~J − iωε0 ~E
)

= ~J · ~E±λ
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If we integrate this over the volume between S− and S+,
using Gauss’ theorem and the boundary condition that
~E‖ = 0 at the conductor’s surface,

∫
S

(
~E × ~H±

λ − ~E±
λ × ~H

)
· n̂ =

∫
V

~J · ~E±
λ ,

where S consists of S+ with n̂ = ẑ, and S− with n̂ = −ẑ.
Let’s take the upper sign. The contribution from S+ is
can be reduced to an integral over A at z = 0:

∑
λ′

A+
λ′

∫
S+

(
~E+

λ′ × ~H+
λ − ~E+

λ × ~H+
λ′

)
z

=
∑
λ′

A+
λ′

∫
S+

(
~Eλ′ × ~Hλ − ~Eλ × ~Hλ′

)
z
ei(kλ+kλ′ )z

=
∑
λ′

A+
λ′

∫
A

(
~Eλ′ ×

(
Z−1

λ ẑ × ~Eλ

)

− ~Eλ ×
(
Z−1

λ′ ẑ × ~Eλ′
))

z
ei(kλ+kλ′ )z
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∑
λ′

A+
λ′

∫
S+

(
~E+

λ′ × ~H+
λ − ~E+

λ × ~H+
λ′

)
z

=
∑
λ′

A+
λ′

∫
A

(
1

Zλ

~Eλ′ · ~Eλ − 1
Zλ′

~Eλ · ~Eλ′

)
ei(kλ+kλ′ )z

=
∑
λ′

A+
λ′δλλ′

(
1

Zλ
− 1

Z ′
λ

)
ei(kλ+kλ′ )z = 0.

On the other hand, the contribution from S− is∑
λ′

A−
λ′

∫
S−

−
(

~E−
λ′ × ~H+

λ − ~E+
λ × ~H−

λ′

)
· ẑ

=
∑
λ′

A−
λ′

∫
S−
−

(
~Eλ′ × ~Hλ + ~Eλ × ~Hλ′

)
· ẑ ei(kλ−kλ′ )z

= −
∑
λ′

A−
λ′

2
Zλ

δλλ′ = − 2
Zλ

A−
λ

so A−
λ = −Zλ

2

∫
V

~J · ~E+
λ .
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The same argument for the lower sign, as spelled out in
the book, gives the equation with the superscript signs
reversed, so both are

A±λ = −Zλ

2

∫
V

~J · ~E∓λ .

In addition to sources due to currents, we may have
contributions due to obstacles or holes in the conducting
boundaries. These can be treated as additional surface
terms in Gauss’ law (by excluding obstacles from the
region of integration V ), but this requires knowing the
full fields at the surface of the obstacles or the missing
parts of the waveguide conductor. This is treated in
§9.5B, but we won’t discuss it here.
So finally we are at the end of Chapter 8.


