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Causality
We have seen that the issue of how ε, µ and n depend on
ω raises questions about causality: Can signals travel
faster than c, or even backwards in time?
It is very often useful to assume that polarization is linear
and local in space, and the polarizability is not time
dependent, meaning

~D(~x, ω) = ε(ω) ~E(~x, ω),

but that does not mean it is local in time, for

~D(~x, t) =
1√
2π

∫ ∞

−∞
dω ~D(~x, ω)e−iωt

=
1√
2π

∫ ∞

−∞
dω e−iωtε(ω) ~E(~x, ω)

=
1
2π

∫ ∞

−∞
dω e−iωtε(ω)

∫ ∞

−∞
dt′ ~E(~x, t′)eiωt′

Let us write ε(ω) = ε0 [1 + χe(ω)] in terms of the electric
susceptibility.
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G(t− t′)
Let G(τ) be the fourier transform of χe(ω),

G(τ) =
1
2π

∫ ∞

−∞
dω e−iωτχe(ω).

Then we have the relation between ~D and ~E given by

~D(~x, t) = ε0

{
~E(~x, t) +

∫ ∞

−∞
dτ G(τ) ~E(~x, t− τ)

}
.

Thus we see that ~D(~x, t) depends linearly on the function
~E(~x, t′) of time t′, but not on the single value ~E(~x, t).
That is, the dependence is non-local in time. Of course
if ε(ω) were constant, G(τ) ∝ δ(τ) and we would have the
local ~D(~x, t) = ε ~E(~x, t), but that is not the case generally.

As ~D(~x, t) and ~E(~x, t) are both real, ~D∗(~x,−ω) = ~D(~x, ω)
and similarly for ~E, so for real ω, ε∗(ω) = ε(−ω). This
means G(τ) is real (for real τ).
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Causality
That the polarization at time t might depend on the
electric field at some earlier time t′ is not surprising, but
shouldn’t it be blind to fields at later times? That is,
shouldn’t we insist G(τ) = 0 for τ < 0)?

Let’s consider our oscillator strength model, with

χe(ω) =
ω2

P

ω2
0 − ω2 − iγω

(or a sum of such contributions with different ω0’s and
γ’s). Then

G(τ) =
ω2

P

2π

∫ ∞

−∞
dω

e−iωτ

ω2
0 − ω2 − iγω

=
ω2

P

4πν0

∫ ∞

−∞
dω

(
e−iωτ

ω + ν0 + iγ/2
− e−iωτ

ω − ν0 + iγ/2

)
.

where ν0 =
√

ω2
0 − γ2/4.
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Evaluating G(τ) for oscillators

The integrals can be easily done by closing the contours
in the complex plane.

The integral∫ ∞

−∞
dω

e−iωτ

ω ± ν0 + iγ/2

can be done by closing the con-
tour with a large semicircle in
the upper or lower half plane,
whichever gives zero contribu-
tion because of the exponen-
tial. For negative τ ,
|e−iωτ | = e−|τ |Imω, so the contribution of the green
infinite-radius semicircle in the upper half plane vanishes,
and as the integrand is analytic in the enclosed region,
the integral is zero. Thus we do have G(τ) = 0 for τ < 0.
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For τ > 0, the contour is closed in the lower half plane,
and the integral is given by −2πi times the sum of the
residues, which are e±iν0τ−γτ/2. So the two terms for
positive τ fill in the result:

G(τ) = ω2
P

sin(ν0τ)
ν0

Θ(τ).

Typical values for the lifetime of states, and hence the
line-widths of the photons emitted, give γi from 107/s to
109/s, so the effective τ ’s are of the order of nanoseconds.
While the response of ~D to ~E is not instantaneous, it is
quick.

Physics 504,
Spring 2011
Electricity

and
Magnetism

Shapiro

Causality

Model-independent ε’s

We will now find constraints on possible forms of ε(ω)
without assumptions on the model of molecular behavior.
We have seen that reality of the fields in the time domain
requires ε∗(ω) = ε(−ω) for real ω. We have only defined
and used ε(ω) for real ω, but if we would like to continue
ε as a complex valued analytic function, we need to
extend the constraint to

ε∗(ω∗) = ε(−ω), χ∗e(ω
∗) = χe(−ω).

We will also insist that G(τ) is finite and real for positive
τ and zero for negative τ . We might expect G −→

τ→∞ 0
which is true for dielectrics, but DC currents correspond
to singular polarizability for DC conditions, with
ε ∼ iσ/ω, as we saw in for zero-mode oscillators. This will
come from G −→

τ→∞ σ/ε0. In any case, we will assume G

does not blow up at infinity.
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For large ω, χe is determined by G(τ) near τ = 0. Indeed,
if

G(t) =
∑

n

tn

n!
dnG

dtn

∣∣∣∣
0

,

χe(ω) =
∑

n

1
n!

dnG

dtn

∣∣∣∣
0

∫ ∞

0
tneiωt

=
∑

n

dnG

dtn

∣∣∣∣
0

(−iω)−(n+1) = i
G(0)

ω
− G′(0)

ω2
+ . . . .

Note G(0) = 0 by continuity from negative τ ’s, so the
leading term is 1/ω2.
With G thus well-behaved,

χe(ω) =
∫ ∞

0
G(τ)eiωτ dτ

is a well defined integral for all ω with Im ω ≥ 0, except
for the possible pole at ω = 0. Thus χe(ω) is an analytic
function in the upper half plane.
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Therefore, by Cauchy’s theorem, for z in the upper half
plane,

χe(z) =
1

2πi

∮
C

χe(ω′)
ω′ − z

dω′

with C the contour consisting of the black real axis and
the green semicircle, going over 0 and under z if it lies on
the real axis. Because χe(ω) goes to zero at infinity, we
can discard the green semicircle. If z = ω + iδ, with δ > 0

χe(z) =
1

2πi

∫ ∞

−∞
dω′

χe(ω′)
ω′ − ω − iδ

.

We are interested in z approaching the real axis from
above, δ ↘ 0, so we may use

1
ω′ − ω − iδ

= P

(
1

ω′ − ω

)
+ iπδ(ω′ − ω),

where the principal part P means

P

∫ ∞

−∞
dω′

1
ω′ − ω

f(ω′) := lim
ε→0

(∫ ω−ε

−∞
+

∫ ∞

ω+ε

)
dω′

ω′ − ω
f(ω′).
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The δ(ω′ − ω) term just cancels half the left hand side, so
doubling it, for real ω, we have

χe(ω) =
1
iπ

P

∫ ∞

−∞
dω′

χe(ω′)
ω′ − ω

=
1
iπ

P

∫ ∞

0
dω′

(
χe(ω′)
ω′ − ω

− χe(−ω′)
ω′ + ω

)

=
1
iπ

P

∫ ∞

0
dω′

(
χe(ω′)
ω′ − ω

− χ∗e(ω′)
ω′ + ω

)
Taking real and imaginary parts separately,

Re χe(ω) =
1
π

P

∫ ∞

0
dω′Im χe(ω′)

(
1

ω′ − ω
+

1
ω′ + ω

)

=
1
π

P

∫ ∞

0
dω′Im χe(ω′)

2ω′

ω′ 2 − ω2

Im χe(ω) =
−1
π

P

∫ ∞

0
dω′Re χe(ω′)

(
1

ω′ − ω
− 1

ω′ + ω

)

=
1
π

P

∫ ∞

0
dω′Re χe(ω′)

2ω

ω′ 2 − ω2
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Maxwell’s Equations in Linear Media
Recall the basis equations:

~∇ · ~D =
1
ε0

ρ Gauss for D

~∇ · ~B = 0 Gauss for B

~∇× ~H − ∂ ~D

∂t
= µ0

~J Ampère (+Max)

~∇× ~E +
∂ ~B

∂t
= 0 Faraday

plus the Lorentz force:

~F = q( ~E + ~v × ~B)

and the constitutive relations (in frequency space)

~D = ε ~E, ~B = µ ~H.
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Interface between conductor and
non-conductor

Consider the interface between a dielectric and an good
conductor c.
Conductor c: if perfect, no ~E.
Surface charge Σ and eddy cur-
rents can prevent fields from
penetrating, so no ~H inside con-
ductor.
Across the interface:
Faraday on loop Γ −→ E‖ con-
tinuous
Gauss on pillbox S −→ B⊥ con-
tinuous
Thus just outside the conductor
E‖ = 0, B⊥ = 0.
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Good (not perfect) conductor

For good (not perfect) conductor, take ~J = σ ~E with large
conductivity σ. Assume time-dependence ∝ e−iωt

Let ξ be distance inside conductor. ~H varies rapidly with
ξ.

~∇× ~Hc = ~J +
∂ ~D

∂t
≈ σ ~E,

~∇× ~Ec = −∂ ~B

∂t
= iωµcHc

Rapid variation with depth ξ dominates, ~∇ = −n̂ ∂
∂ξ , and

~Ec =
1
σ

~J = − 1
σ

n̂× ∂ ~Hc

∂ξ
, ~Hc =

i

ωµc
n̂× ∂ ~Ec

∂ξ
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~Ec =
1
σ

~J = − 1
σ

n̂× ∂ ~Hc

∂ξ
, ~Hc =

i

ωµc
n̂× ∂ ~Ec

∂ξ

so n̂ · ~Hc = 0 and

n̂× ~Hc =
i

ωµc
n̂×

(
n̂× ∂ ~Ec

∂ξ

)

= − i

σωµc
n̂×

(
n̂×

[
n̂× ∂2 ~Hc

∂ξ2

])

=
i

σωµc

∂2

∂ξ2

(
n̂× ~Hc

)
.

Simple DEQ, exponential solution, with δ =
√

2
µcωσ

,

~Hc = ~H‖e−ξ/δeiξ/δ,

H‖ is tangential field outside surface of conductor.
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~E inside conductor and at boundary

From ~Hc = ~H‖e−ξ/δeiξ/δ,

~Ec = − 1
σ

n̂× ∂ ~Hc

∂ξ
=

√
µcω

2σ
(1− i)n̂× ~H‖e−ξ/δeiξ/δ,

which means, by continuity, that just outside the
conductor

~E‖ =

√
µcω

2σ
(1− i)n̂× ~H‖.


