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To review, in our original presentation of Maxwell’s
equations, ρall and ~Jall represented all charges, both “free”
and “bound”. Upon separating them, “free” from
“bound”, we have (dropping quadripole terms):

I For the electric field
I ~E called electric field
I ~P called electric polarization is induced field
I ~D called electric displacement is field of “free charges”
I ~D = ε0 ~E + ~P

I For the magnetic field
I ~B called magnetic induction (unfortunately)
I ~M called magnetization is the induced field
I ~H called magnetic field
I ~H = 1

µ0
~B − ~M

Then the two Maxwell equations with sources, Gauss for
~E and Ampère, get replaced by

~∇ · ~D = ρ

~∇× ~H − ∂ ~D

∂t
= ~J
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Energy in the Fields

The rate of work done by E&M fields on charged particles
is: ∑

qj~vj · ~E(~xj , t),

or if we describe it by current density,∫
V

~J · ~E.

This must be the rate of loss of energy U in the fields
themselves, so

−dU

dt
=
∫

V

~J · ~E.

Now by Ampère’s Law,

~J · ~E =

(
~∇× ~H − ∂ ~D

∂t

)
· ~E.
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From the product rule and the cyclic nature of the triple
product, we have for any vector fields

~∇ · (~V × ~W ) = ~W · (~∇× ~V )− ~V · (~∇× ~W ),

so we may rewrite
(

~∇× ~H
)
· ~E as

−~∇ ·
(

~E × ~H
)

+ ~H · ~∇× ~E = −~∇
(

~E × ~H
)
− ~H · ∂ ~B

∂t

where we used Faraday’s law. Thus

~∇ ·
(

~E × ~H
)

+ ~E · ∂ ~D

∂t
+ ~H · ∂ ~B

∂t
+ ~J · ~E = 0.

Let us assume the medium is linear without dispersion in
electric and magnetic properties, that is ~B ∝ ~H and
~D ∝ ~E. Then let us propose that the energy density of
the fields is

u(~x, t) =
1
2

(
~E · ~D + ~B · ~H

)
,
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we have
∂u

∂t
+ ~J · ~E + ~∇ ·

(
~E × ~H

)
= 0.

As this is true for any volume, we may interpret this
equation, integrated over some volume V with surface ∂V
as saying that the rate of increase in the energy in the
fields plus the energy of the charged particles plus the flux
of energy out of the volume is zero, that is, no energy is
created or destroyed. The flux of energy is then given by
the Poynting vector

~S = ~E × ~H.

We have made assumptions which only fully hold for the
vacuum, as we assumed linearity and no dispersion (the
ratio of ~D to ~E independent of time).
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Linear Momentum
So as not to worry about such complications, let’s restrict
our discussion to the fundamental description, or
alternatively take our medium to be the vacuum, with the
fields interacting with distinct charged particles (mj , qj at
~xj(t)).
The mechanical linear momentum in some region of space
is ~Pmech =

∑
j mj~̇xj , so

d~Pmech

dt
=

∑
j

~Fj =
∑

j

qj

(
~E(~xj) + ~vj × ~B(~xj)

)

=
∫

V
ρ ~E + ~J × ~B,

provided no particles enter or leave the region V .
Let us postulate that the electromagnetic field has a
linear momentum density

~g =
1
c2

~E × ~H = ε0 ~E × ~B.
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Then the total momentum inside the volume V changes
at the rate

d~PTot

dt
=

∫
V

ρ ~E + ~J × ~B + ε0
∂

∂t
( ~E × ~B).

Using Maxwell’s laws to substitute ε0~∇ · ~E for ρ and
ε0

(
c2~∇× ~B − ∂ ~E/∂t

)
for ~J ,

d~PTot

dt
= ε0

∫
V

~E(~∇ · ~E) + c2(~∇× ~B)× ~B + ~B × ∂ ~E

∂t

− ∂

∂t

(
~B × ~E

)

= ε0

∫
V

~E(~∇ · ~E) + c2(~∇× ~B)× ~B − ∂ ~B

∂t
× ~E

= ε0

∫
V

~E(~∇ · ~E) + c2(~∇× ~B)× ~B − ~E ×
(

~∇× ~E
)

.
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For any vector field ~V ,

(
~V × (~∇× ~V

)
α

=
∑
βγµν

εαβγVβ εγµν
∂

∂xµ
Vν

=
1
2

∂V 2

∂xα
−

∑
β

Vβ
∂Vα

∂xβ

= −
∑
β

∂

∂xβ

(
VαVβ − 1

2
V 2δαβ

)
.

So we see that the E terms in dP/dt may be written as

∂

∂xβ
ε0

(
EαEβ − 1

2
~E 2δαβ

)
.

The same may be done for the magnetic field, as the
missing ~∇ · ~B is zero. Thus we define
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The Maxwell Stress Tensor

Tµν = ε0

[
EµEν − 1

2
~E 2δµν + c2

(
BµBν − 1

2
~B 2δµν

)]
,

which is called the Maxwell stress tensor. Then(
d~PTot

dt

)
µ

=
∑

ν

∫
V

∂

∂xν
Tµν .

By Gauss’s law, the integral of this divergence over V is
the integral of

∑
β Tαβn̂β over the surface ∂V of the

volune considered, so Tαβn̂β is the flux of the α
component of momentum out of the surface.
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Complex Fields, Dispersion

In linear media we can assume ~D = ε ~E and ~B = µ ~H, but
actually this statement is only good for the Fourier
transformed (in time) fields, because all media (other than
the vacuum) exhibit dispersion, that is, the permittivity ε
and magnetic permeability µ depend on frequency. So we
need to deal with the Fourier transformed fields1

~E(~x, t) =
∫ ∞

−∞
dω ~E(~x, ω)e−iωt

~D(~x, t) =
∫ ∞

−∞
dω ~D(~x, ω)e−iωt

and we define linear permittivity as
D(~x, ω) = ε(ω) ~E(~x, ω), and similarly
B(~x, ω) = µ(ω) ~H(~x, ω). The inverse fourier transform
does not like multiplication — if ε(ω) is not constant, we
do not have ~D(~x, t) proportional to ~E(~x, t).

1Note the 2π inconsistency with 6.33, and slide 8 of lecture 1.
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Note that the electric and magnetic fields in spacetime
are supposed to be real, not complex, valued. From

~E(~x, t) =
∫ ∞

−∞
dω ~E(~x, ω)e−iωt

= ~E∗(~x, t) =
∫ ∞

−∞
dω ~E∗(~x, ω)eiωt =

∫ ∞

−∞
dω ~E∗(~x,−ω)e−iωt

which tells us ~E(~x, ω) = ~E∗(~x,−ω), and similarly for the
other fields. Thus the permittivity and permeability also
obey

ε(−ω) = ε∗(ω), µ(−ω) = µ∗(ω).

The power transferred to charged particles includes an
integral of

~E · ∂ ~D

∂t
=

∫∫
dωdω′ ~E∗(ω′)(−iωε(ω)) · ~E(ω)e−i(ω−ω′)t,

where we took the complex conjugate expression for ~E(t),
but alternatively we could have taken the complex
conjugate expression for ~D and interchanged ω and ω′,
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~E · ∂ ~D

∂t
=

∫∫
dωdω′ ~E∗(ω′)(iω′ε∗(ω′)) · ~E(ω)e−i(ω−ω′)t,

or averaging the two expressions

~E·∂
~D

∂t
=

i

2

∫∫
dωdω′ ~E∗(ω′)· ~E(ω)[ω′ε∗(ω′)−ωε(ω)]e−i(ω−ω′)t,

We are often interested in the situation where the fields
are dominately near a given frequency, and if we ignore
the rapid oscillations in this expression which come from
one ω positive and one negative, we may assume the ω’s
differ by an amount for which a first order variation of ε is
enough to consider, so
ω′ε∗(ω′) ≈ ωε∗(ω) + (ω′ − ω)d(ωε∗(ω))/dω, and

[iω′ε∗(ω′)− iωε(ω)] = 2ωIm ε(ω)− i(ω − ω′)
d

dω
(ωε∗(ω))
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Inserting this back into ~E · ∂ ~D/∂t, the −i(ω − ω′) can be
interpreted as a time derivative, so

~E · ∂ ~D

∂t
=

∫∫
dωdω′ ~E∗(ω′) · ~E(ω)ωIm ε(ω)e−i(ω−ω′)t

+
∂

∂t

1
2

∫∫
dωdω′ ~E∗(ω′) · ~E(ω)

d

dω

(
ωε∗(ω)

)
e−i(ω−ω′)t.

If ε were pure real, the first term would not be present,
and if ε were constant, the d[ωε∗(ω)]/dω would be ε,
consistent with the u = 1

2εE2 we had in our previous
consideration. There is, of course, a similar result from
the ~H · d ~B/dt term. More generally, we can think of the
first term as energy lost to the motion of bound charges
within the molecules, not included in ~J · ~E, which goes
into heating the medium, while the second term describes
the energy density in the macroscopic electromagnetic
fields.
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Harmonic Fields
We are often interested in considering fields oscillating
with a given frequency, so

~E(~x, t) = Re
(

~E(~x)e−iωt
)

=
1
2

[
~E(~x)e−iωt + ~E∗(~x)eiωt

]
.

If we have another such field, say ~J(~x, t), the dot product
is

~J(~x, t) · ~E(~x, t)

=
1
4

[(
~J(~x)e−iωt + ~J∗(~x)eiωt

)
·
(

~E(~x)e−iωt + ~E∗(~x)eiωt
)]

=
1
2
Re

[
~J∗(~x) · ~E(~x) + ~J(~x) · ~E(~x)e−2iωt

]
.

The second term is rapidly oscillating, so can generally be
ignored, and the average product is just half the product
of the two harmonic (fourier transformed) fields, one
complex conjugated.
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Energy in Harmonic Fields

Fourier transforming Maxwell’s equations, for the
Harmonic fields, for which ∂/∂t becomes −iω, we see

~∇ · ~B = 0 ~∇× ~E − iω ~B = 0
~∇ · ~D = ρ ~∇× ~H + iω ~D = ~J

The current induced will also be harmonic, so the power
lost to current is

1
2

∫
d3x ~J∗ · ~E

=
1
2

∫
d3x~E ·

(
~∇× ~H∗ − iω ~D∗

)
=

1
2

∫
d3x

[
−~∇ ·

(
~E × ~H∗

)
+

(
~∇× ~E

)
·H∗ − iω ~E · ~D∗

]
=

1
2

∫
d3x

[
−~∇ ·

(
~E × ~H∗

)
+ iω ~B ·H∗ − iω ~E · ~D∗

]
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We define the complex Poynting vector ~S = 1
2
~E × ~H∗ and

the harmonic densities of electric and magnetic energy,
we = 1

4
~E · ~D∗ and wm = 1

4
~B · ~H∗, and thus find (using

Gauss’s divergence law)
1
2

∫
V

~J∗ · ~E + 2iω

∫
V

(we − wm) +
∮

∂V

~S · n̂ = 0,

which, as a complex equation, contains energy flow. If the
medium may be taken as pure lossless dielectrics and
magnetics, with real ε and µ, the real part of this
equation says

1
2

∫
V

Re
(

~J∗ · ~E
)

+
∮

∂V
Re

(
~S · n̂

)
= 0,

which says that the power transferred to the charges and
that flowing out of the region, on a time averaged basis, is
zero. But there is also an oscillation of energy between
the electric and magnetic fields. For example, with a pure
plane wave in vacuum, with ~E and ~H in phase, S is real,
~J vanishes, and the imaginary part tells us the electric
and magnetic energy densities are equal.
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Rotational and PCT properties

Let us briefly describe how our fields behave under
rotational symmetry, reflection, charge conjugation and
time reversal.
From mechanics, forces are vectors, so as a charge
experiences a force q ~E, ~E is a vector under rotations,
unchanged under time reversal, reverses in sign under
charge conjugation, and under parity ~E → − ~E, as a
proper vector should.2

Charge and charge density are proper scalars, reversing
under charge conjugation (by definition).
Velocity is a proper vector, so for q~v × ~B to be a proper
vector as well, ~B must be a pseudovector, whose
components are unchanged under parity, because the cross
product (and εαβγ) are multiplied by −1 under parity. Of
course we also have ~B odd under charge conjugation.

2under reflection in a mirror, the component perpendicular to the
mirror reverses, but parity includes a rotation of 180◦ about that
axis, reversing the other two components as well.
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Under time-reversal, forces and acceleration are
unchanged (∝ d2/dt2) but velocity changes sign, so ~E
(and ~P and ~D) are even under time-reversal, but ~B (and
~M and ~H) are odd under time-reversal, that is, the get
multiplied by −1.
Maxwell’s equations, the Lorentz force law, and all the
other formulae we have written are consistent with
symmetry under rotations and P,C, and T reflections.
That means the laws themselves are invariant under these
symmetries.
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Magnetic Monopoles

In vacuum, Maxwell’s equations treat ~E and ~B almost

identically. Then if we consider a doublet ~D =

(
~E

c ~B

)
the

two Gauss’ laws say

~∇ · ~D = 0, ~∇×D + iσ2
1
c

∂ ~D
∂t

= 0,

where iσ2 =
(

0 1
−1 0

)
. This not only lets us write 4 laws

as 2, but shows that the equations would be unchanged
by a rotation in this two dimensional space. But this
symmetry is broken by our having observed electric
charges and currents but no magnetic charges (magnetic
monopoles). But maybe we just haven’t found them yet,
and we should add them in.
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Maxwell with Monopoles
Then Maxwell’s equations become

~∇ · ~D = ρe, ~∇× ~H =
∂ ~D

∂t
+ ~Je

~∇ · ~B = ρm, −~∇× ~E =
∂ ~B

∂t
+ ~Jm

From these equations and our previous symmetry
properties, we see that ρe is a scalar, ρm is a pseudoscalar,
~Je a proper vector and ~Jm a pseudovector. Define the
doublets3

~H =

(
ε

1
2
0

~E

µ
1
2
0

~H

)
~B =

(
µ

1
2
0

~D

ε
1
2
0

~B

)
~J =

(
µ

1
2
0

~Je

ε
1
2
0

~Jm

)
R =

(
µ

1
2
0 ρe

ε
1
2
0 ρm

)

so Maxwell’s equations become

~∇ · ~B = R, iσ2
~∇×H =

∂ ~B
∂t

+ ~J .

3The
√

ε0 and
√

µ0 are due to the unfortunate SI units we are

using. Let Z0 =
p

µ0/ε0.
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Thus we see that the equations are invariant under a
simultaneous rotation of these doublets in the two
dimensional space, in particular

~E → ~E cos ξ + Z0
~H sin ξ.

But this is very pecular, as ~E is a proper vector and ~H is
a pseudovector. So such an object would not have a well
defined parity.

Physics 504,
Spring 2011
Electricity

and
Magnetism

Shapiro

Poynting,
Energy and
Momentum in
the fields, Tµν

Poynting’s
Theorem

Dispersion

Harmonic
Fields

Quantization of Charge

Dirac noticed that a point charge and a point monopole,
both at rest, gives a momentum density and an angular
momentum density in the electromagnetic fields. Consider
a monopole at the origin, ρm = gδ(~x), and a point charge
ρe = qδ(~x− (0, 0, D)) on the z axis a distance D away.

We have magnetic and electric fields

~H =
g

4πµ0

êr

r2
, ~E =

q

4πε0

êr′

r′ 2 .

The momentum density in the fields
is ~g = 1

c2
~E × ~H, which points in the

aximuthal direction, ∝ êφ in spheri-
cal coordinates. As the magnitude is
independent of φ, when we integrate
this vector in φ, we will get zero, so
the total momentum vanishes.

E

B

gr’

r
L density
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But the angular momentum density, ~r × ~g, has a
component everywhere in the −z direction, so its integral
will not vanish.

~L =
1
c2

∫
d3r ~r × ( ~E × ~H) =

g

4πµ0c2

∫
d3r

~r × ( ~E × ~r)
r3

=
gε0
4π

∫
d3r

r2 ~E − ~r(~r · ~E)
r3

=
gε0
4π

∫
d3r ( ~E · ~∇)

~r

r

=
gε0
4π

(∮
∂V

n̂ · ~E
~r

r
−

∫
V

~r

r
~∇ · ~E

)

Taking the volume to be a large sphere, the first term
vanishes because n̂ · ~E is constant/r2, so the integral is
∝ ∫

dΩn̂ = 0. In the second term
~∇ · ~E = qδ3(~r − (0, 0, D)/ε0 so overall

~L = − qg

4π
êz.
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Charge Quantization

There are several interesting things about this result. One
is that it is independent of how far apart the two objects
are. But even more crucial, if we accept from quantum
mechanics the requirement that angular momentum is
quantized in usits of ~/2, we see that if just one monopole
of magnetic charge g exists anywhere, all purely electric
charges must be
qn = nh/g where n is an integer. Furthermore, as
there are electrons, the smallest nonzero monopole has a
“charge” at least h/e, and the Coulomb force between two
such charges would be

g2

4πµ0

/
e2

4πε0
=

h2ε0
e4µ0

=
(

hε0c

e2

)2

=
(

137
2

)2

∼ 4700

times as big as the electric force between two electrons at
the same separation.
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Vector Potential and Monopoles

The ability to define vector and scalar potentials to
represent the electromagnetic fields depended on the two
sourceless Maxwell equations. If we have monopoles,
these conditions don’t apply whereever a monopole exists,
so that ~B is not divergenceless everywhere. Even if ~∇ · ~B
fails to vanish at only one point, it means ~B cannot be
written as a curl throughout space. Poincaré’s Lemma
tells us it is possible on a contractible domain, which is
not true for a sphere surrounding the monopole. One can
define ~A consistently everywhere other than on a “Dirac
string” extending from the monopole to infinity, but ~A is
not defined on the string.


