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Fourier transform to Frequency space
Power received per solid angle, as a function of time1

dP (t)

dΩ
= | ~A(t)|2 where ~A(t) :=

√
c

4π

[
R ~E

]
ret

.

Integrating over time, the total energy deposited per solid
angle is

dW

dΩ
=

∫ ∞

−∞
|A(t)|2dt =

∫ ∞

−∞
|Ã(ω)|2dω,

where Ã(ω) is the Fourier transform of A(t),

Ã(ω) :=
1√
2π

∫ ∞

−∞
~A(t) eiωtdt.

As ~A(t) is real, Ã(−ω) = (Ã(ω))∗, so
dW

dΩ
= 2

∫ ∞

0
|Ã(ω)|2dω.

1 ~A is not the vector potential here!
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d2I/dω dΩ

We can define the energy per unit solid angle per unit
frequency,

d2I

dωdΩ
= 2| ~A(ω)|2.

Our expression for the radiative part of the electric field,

R ~E(t) =
q

c

n̂×
(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)3

∣∣∣∣∣∣∣
te

.

gives

A(ω) =

√
q2

8π2c

∫ ∞

−∞
eiωt

 n̂×
(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)3


te

dt

where t = te +R(te)/c,
dt

dte
= 1 +

1

c

dR

dte
= 1− n̂ · ~β(te),
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So expressing the integral over te, we have

A(ω) =

√
q2

8π2c

∫ ∞

−∞
eiω(te+R(te)/c)

 n̂×
(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)2

 dte,
and now that there are not references to t left we can
drop the subscript e.
R(t) = R− n̂ · ~r(t), where observer is R from an origin

within the region where ~̇β 6= 0, which we assume is small
compared to R. Then

A(ω) =

√
q2

8π2c
eiωR/c

∫ ∞

−∞
eiω(t−n̂·~r(t)/c)

 n̂×
(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)2

 dt.
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In calculating d2I/dωdΩ the phase factor eiωR/c will be
irrelevant.
We note that the piece in the integrand multiplying the
exponential can be written as a total time derivative:

d

dt

[
n̂× (n̂× ~β)

1− n̂ · ~β

]
=
n̂× (n̂× ~̇β)

1− n̂ · β
+
n̂× (n̂× ~β)(n̂ · ~̇β)

(1− n̂ · β)2

=
[(n̂ · ~̇β)n̂− ~̇β ](1− n̂ · β) + [(n̂ · β)n̂− ~β](n̂ · ~̇β)

(1− n̂ · β)2

=
(n̂ · ~̇β)(n̂− ~β)− ~̇β(1− n̂ · β)

(1− n̂ · β)2

=
n̂×

(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)2

.
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Thus we have

A(ω) =

√
q2

8π2c
eiωR/c

∫ ∞

−∞
eiω(t−n̂·~r(t)/c) d

dt

[
n̂× (n̂× ~β)

1− n̂ · ~β

]
dt.

(1)
It may be useful to integrate by parts, but we will also
see, when we discuss the low frequency limit of
bremsstrahlung, that this is useful as is.
Integrating by parts, assuming that boundary terms at
t = ±∞ can be discarded, and inserting in the intensity,
we have

d2I

dωdΩ
=
q2ω2

4π2c

∣∣∣∣∫ ∞

−∞
eiω(t−n̂·~r(t)/c) n̂×

(
n̂× ~β

)
(t)

∣∣∣∣2 dt.

We will skip pages 676-683
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Wigglers and Undulators

The intense peaking of forward radiation from
ultrarelativistic particles, and the blue-shifting thereof, is
useful for condensed matter experimentalists and
biologists who could make use of very intense short pulses
of X-rays. Old high-energy accelerators needn’t die, they
become light-sources. Monochromatic sources would also
be useful.

Wigglers and Undulators use a periodic sequence of
alternately directed transverse magnets to produce
transverse sinusoidal oscillations, x = a sin 2πz/λ0. The

angle of the beam will vary by ψ0 = ∆θ =
dx

dz
=

2πa

λ0
.

The spread in angle of the forward radiation is θr ≈ 1/γ,
centered on the momentary direction of the beam.
If ψ0 � θr, observer sees only part of oscillation.
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Wigglers

In this case we have a wiggler.
With ψ0 � θr, the observer sees the source turning on
and off. At the source, that frequency is βc/λ0. Each
wiggle sends a pulse to our eye only for a fraction, roughly
(θr/ψ0), of one period, so ∆te ≈ (λ0/βc)× (θr/ψ0).

λ
0

0
ψ γ1

λ
0 γ ψ

0

But this ∆te gets compressed for the observer by a factor

1− n̂ · ~β ≈ 1/2γ2. Received pulse has ∆t =
λ0

βc

1

2γ3ψ0
,

frequencies up to f ≈ 1/∆t ≈ 2γ3ψ0c/λ0. Each pulse is
incoherent, so the intensity is N times that of a single
wiggle.
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Undulators
In the other limit, ψ0 � θr, the observer is always in the
intense region of the beam, and the beam is radiating
coherently. In the par-
ticle’s rest frame the
disturbing fields have
a Fitzgerald-contracted
wavelength λ0/γ, going
by at βc, so the particle
sees itself oscillating at
ω′ = 2πcγβ/λ0 ≈ 2πcγ/λ0.
But the observer in the lab would say the particle’s clock
is running slow and therefore the source frequency is
ω′/γ, but the Doppler contraction of the pulse increases
the frequency by

1

(1− n̂ · ~β)
≈ 1

1− (1− γ−2/2)(1− θ2/2)
≈ 2γ2

1 + γ2θ2
,

where I used β =
√

1− γ−2 ≈ 1− γ−2/2.
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ω =
2ω′

γ(1− n̂ · ~β)
=

4πcγ2

λ0(1 + γ2θ2)
.

Note this is coherent radiation, so the intensity is
proportional to N2 and the frequency has a spread
proportional to 1/N

We will be content with this rather qualitative discussion
and skip the fine details of pp 686-694.
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Thomson Scattering

We saw (14.18) that in the particle’s rest frame the
electric field is given by

~E =
q

c2R
n̂× (n̂× ~̇v),

so the amplitude corresponding to a particular
polarization vector ~ε is

~ε ∗ · ~E =
q

c2R
~ε ∗ ·

(
n̂× (n̂× ~̇v)

)
=

q

c2R
~ε ∗ · ~̇v,

as ~ε ∗ · n̂ = 0. The power radiated with this polarization
per sterradian is

dP

dΩ
=

q2

4πc3

∣∣∣~ε ∗ · ~̇v∣∣∣2 .
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If a free electron has an electric field

~E(~x, t) = ~ε0E0e
i~k·~x−iωt

incident on it, it will have an acceleration

~̇v(t) = ~ε0
e

m
E0e

i~k·~x−iωt

If the motion is sufficiently limited to ignore the change in
position and keep the particle non-relativistic,
(x ≈ eE0/mω

2 � λ = 2πc/ω), the time average of∣∣∣~ε ∗ · ~̇v∣∣∣2 = (~ε ∗ · ~̇v)(~̇v ∗ · ~ε) is

1

2

e2|E0|2

m2
|~ε ∗ · ε0|2

and 〈
dP

dΩ

〉
=

c

8π
|E0|2

(
e2

mc2

)2

|~ε ∗ · ~ε0|2 .
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Dividing this by the incident energy flux c|E0|2/8π we get
the cross section

dσ

dΩ
=

(
e2

mc2

)2

|~ε ∗ · ~ε0|2 .

If the scattering angle is θ and the incident beam is
unpolarized and the cross section summed over final
polarizations, the factor of
1

2

∑
i

∑
f

|~εf ∗ · ~εi|2

=
1

2π2

∫ 2π

0
dφi

∫ 2π

0
dφf[

(cos θ cosφf , sinφf ,− sin θ cosφf ) · (cosφi, sinφi, 0)
]2

=
1

2π2

∫ 2π

0
dφi

∫ 2π

0
dφf [(cos θ cosφf cosφi + sinφf sinφi]

2

=
1

2

[
cos2 θ + 1

]2

(incident direction ‖ z, final direction = (sin θ, 0, cos θ).)
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Thus the unpolarized cross section is

dσ

dΩ
=

(
e2

mc2

)2
1 + cos2 θ

2
.

This is called the Thomson formula. The corresponding
total cross section is

σT =
8π

3

(
e2

mc2

)2

.

The quantity in parentheses is called the classical
electron radius, roughly the radius at which a
conducting sphere of charge e would have electrostatic
energy e2/2r = mc2. (The factor of 1/2, or of 3/5 for a
uniformly charged sphere, is discarded.)
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This formula disregarded recoil of the electron when hit
by the electromagnetic wave. Of course classically the
cross section could have been measured with an
arbitrarily weak field, so recoil could be neglected, but
quantum-mechanically the minimum energy hitting the
electron is ~ω, which gives a significant recoil if ~ω ≈ mc2.
In fact, if we take quantum mechanics into account we are
considering Compton scattering, for which, we learned as
freshman, energy and momentum conservation insure that
the outgoing photon has a increased wavelength,

λ′ = λ+
h

mc
(1− cos θ), or

k′

k
=

1

1 +
~ω
mc2

(1− cos2 θ)
.

It turns out that the quantum mechanical calculation (for
a scalar particle) is the classical result times (k′/k)2:

dσ

dΩ

∣∣∣∣
QM, scalar

=

(
e2

mc2

)2 (
k′

k

)2

|~ε ∗ · ~ε0|2 .


