$$P = \frac{2}{3} \frac{q^2}{c} \gamma^6 \left[(\dot{\vec{\beta}})^2 - (\vec{\beta} \times \dot{\vec{\beta}})^2 \right].$$

This is an issue for high-energy accelerators. There are two main types, linear and circular.

In a linear accelerator the direction of $\vec{\beta}$ is constant so $\vec{\beta} \parallel \vec{\beta}$ and

$$P = \frac{2e^2}{3c} \gamma^6 (\dot{\beta})^2 = \frac{2e^2}{3c} \frac{(\dot{\gamma})^2}{\beta^2} = \frac{2e^2}{3m^2c^5} \left(\frac{dE}{dt}\right)^2 / \left(\frac{dx}{cdt}\right)^2$$
$$= \frac{2e^2}{3m^2c^3} \left(\frac{dE}{dx}\right)^2.$$

So the power radiated is independent of the energy and depends only on the rate of energy change.

The ratio of power lost to power input, dE/dt

$$\frac{P}{dE/dt} = \frac{2e^2}{3m^2c^3} \frac{1}{v} \frac{dE}{dx} \to \frac{2}{3} \frac{r_e}{mc^2} \frac{dE}{dx},$$

where $r_e = e^2/mc^2$ is the classical radius of the electron, 2.82 fm. As we are unlikely to increase the energy of an electron by its rest energy in a distance of its tiny classical radius, energy loss in a linac is negligible.

Shapiro

In a synchrotron, particles are in circular orbit with the energy changing slowly but the direction of the momentum changing rapidly, $\dot{\vec{\beta}} = \vec{\omega} \times \vec{\beta} \perp \vec{\beta}$, so

$$P = \frac{2}{3} \frac{q^2}{c} \gamma^6 \left[(\dot{\vec{\beta}})^2 - (\vec{\beta} \times \dot{\vec{\beta}})^2 \right] = \frac{2}{3} \frac{q^2}{c} \gamma^6 \omega^2 \beta^2 \left[1 - \beta^2 \right]$$
$$= \frac{2}{3} \frac{q^2 c}{\rho^2} \gamma^4 \beta^4,$$

where ρ is the orbit radius and we used $c\beta = \omega \rho$. The energy loss per revolution δE is the integral of this over an orbit, $\delta t = 2\pi/\omega = 2\pi\rho/c\beta$, or

$$\delta E = \frac{4\pi}{3} q^2 \beta^3 \gamma^4 \left[\rho \left\langle \frac{1}{\rho^2} \right\rangle \right]$$

where the expression in braces is given rather than a simple $1/\rho$ in case you design your accelerator to have magnets not completely covering the circumference¹.

 $^{^1 \}mathrm{See}$ footnote lecture 15 p. 2, slide 4. \square > \square > \square > \square > \square > \square

For ultrarelativistic particles, $\beta \to 1$,

$$\delta E \propto E^4/\rho$$
,

with the proportionality constant $8.85 \times 10^{-5} \text{m/GeV}^4$ for electrons and $7.80 \times 10^{-18} \text{m/GeV}^4$ for protons.

For Lep, an electron beam of roughly 80 GeV and a radius of about 4 km, the electrons lose nearly a GeV per turn! This is why the ring is as big as it is.

For the LHC, which will have 7 TeV protons at the same radius, I get a loss of only 4 KeV per turn, so energy loss is not the crucial issue for proton synchrotrons, but bending radius is.

$$F^{\alpha\beta} = \frac{q}{U_{\rho}(x^{\rho} - r^{\rho}(\tau))}$$

$$\frac{d}{d\tau} \left[\frac{(x - r(\tau))^{\alpha} U^{\beta}(\tau) - (x - r(\tau))^{\beta} U^{\alpha}(\tau)}{U_{\mu}(x^{\mu} - r^{\mu}(\tau))} \right]_{\tau_{0}}^{}.$$

$$(1)$$

but it is often useful to have the expression more explicitly and in three dimensional language. Using \vec{R} as the 3-vector from $r^{\alpha}(\tau_0)$ to x^{α} , with magnitude R and direction \hat{n} , we have $R^{\alpha} := x^{\alpha} - r^{\alpha}(\tau_0) = (R, R\hat{n}),$ $U^{\alpha}(\tau_0) = (\gamma c, \gamma c \vec{\beta})$

$$\frac{dU^{\alpha}}{d\tau} = \gamma \frac{dU^{\alpha}}{dt} = \left(\gamma^4 c \beta \dot{\beta}, c \gamma^2 \dot{\vec{\beta}} + c \gamma^4 \beta \dot{\beta} \vec{\beta}\right),\,$$

where we used $\dot{\gamma} = \gamma^3 \beta \dot{\beta}$, and we understand that $\vec{\beta}$, $\vec{\beta}$ and γ are to be evaluated at the retarded time τ_0 .

Physics 504, Spring 2010 Electricity and Magnetism

In (??) we then have $d(x^{\alpha} - r^{\alpha}(\tau)/d\tau = -U^{\alpha}$ and $U_{\rho}(x^{\rho} - r^{\rho}(\tau_0)) = R\gamma c(1 - \hat{n} \cdot \vec{\beta})$, but

$$\frac{d}{d\tau}U \cdot (x-r) = -U^2 + (x-r)_{\alpha} \frac{dU^{\alpha}}{d\tau}
= -c^2 + R\left(c\gamma^4\beta\dot{\beta} - \hat{n}\cdot\dot{\beta}c\gamma^2 - \hat{n}\cdot\beta\dot{c}\gamma^4\beta\dot{\beta}\right).$$

Thus

$$F^{\alpha\beta} = \frac{q}{R^3 \gamma^3 c^3 (1 - \hat{n} \cdot \vec{\beta})^3}$$

$$\left[\left(R^{\alpha} \frac{dU^{\beta}}{d\tau} - R^{\beta} \frac{dU^{\alpha}}{d\tau} \right) Rc\gamma (1 - \hat{n} \cdot \vec{\beta}) - (R^{\alpha} U^{\beta} - R^{\beta} U^{\alpha}) \right]$$

$$\left(-c^2 + R \left\{ c\gamma^4 \beta \dot{\beta} - \hat{n} \cdot \dot{\vec{\beta}} c\gamma^2 - \hat{n} \cdot \vec{\beta} c\gamma^4 \beta \dot{\beta} \right\} \right].$$

For the electric field, $\vec{E} = F^{i0}\hat{e}_i$ we have

$$\begin{split} \vec{E} &= \frac{q}{R^3 \gamma^3 c^3 (1 - \hat{n} \cdot \vec{\beta})^3} \\ & \left[\left(R \vec{n} \gamma^4 c \beta \dot{\beta} - R (c \gamma^2 \dot{\vec{\beta}} + c \gamma^4 \beta \dot{\beta} \vec{\beta}) \right) \cdot R c \gamma (1 - \hat{n} \cdot \vec{\beta}) \right. \\ & \left. - (\gamma c R \vec{n} - R \gamma c \vec{\beta}) \right. \\ & \left. \left. \left(-c^2 + R \left\{ c \gamma^4 \beta \dot{\beta} - \hat{n} \cdot \dot{\vec{\beta}} c \gamma^2 - \hat{n} \cdot \vec{\beta} c \gamma^4 \beta \dot{\beta} \right\} \right) \right] \end{split}$$

Some algebra spelled out in the lecture notes gives

$$\vec{E} = \frac{q(\hat{n} - \vec{\beta})}{R^2 \gamma^2 (1 - \hat{n} \cdot \vec{\beta})^3} + \frac{q}{Rc} \frac{\hat{n} \times \left((\hat{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right)}{(1 - \hat{n} \cdot \vec{\beta})^3}.$$

For the magnetic field,

$$\begin{split} B_i &= -\frac{1}{2} \epsilon_{ijk} F^{jk} = -\frac{q \epsilon_{ijk}}{R^3 \gamma^3 c^3 (1 - \hat{n} \cdot \vec{\beta})^3} \\ & \left[(R n_j c \gamma^2 \dot{\beta}_k + R n_j c \gamma^4 \beta \dot{\beta} \beta_k) R c \gamma (1 - \hat{n} \cdot \vec{\beta}) \right. \\ & \left. - R n_j \gamma c \beta_k \left(- c^2 + R (c \gamma^4 \beta \dot{\beta} (1 - \hat{n} \cdot \vec{\beta}) - \hat{n} \cdot \dot{\vec{\beta}} c \gamma^2 \right) \right] \\ &= \left. - \frac{q (\hat{n} \times \vec{\beta})_i}{R^2 \gamma^2 (1 - \hat{n} \cdot \vec{\beta})^3} \right. \\ & \left. - \frac{q}{R c (1 - \hat{n} \cdot \vec{\beta})^3} \left[\hat{n} \times \dot{\vec{\beta}} (1 - \hat{n} \cdot \vec{\beta}) + \hat{n} \times \vec{\beta} \hat{n} \cdot \dot{\vec{\beta}} \right]_i \end{split}$$

so $\vec{B} = \hat{n} \times \vec{E}$. as it should be for a radiation-zone field.

Thus we can derive the expression for the power radiated towards the observer, the flux being given by the Poynting vector

$$\hat{n} \cdot \vec{S} = \frac{c}{4\pi} E^2.$$

At large distances this is

$$\left| \hat{n} \cdot \vec{S} \right|_{\text{ret}} = \frac{q^2}{4\pi c R^2} \left\{ \frac{\hat{n} \times \left[\left(\hat{n} - \vec{\beta} \right) \times \dot{\vec{\beta}} \right]}{\left(1 - \hat{n} \cdot \vec{\beta} \right)^3} \right|_{\text{ret}} \right\}^2.$$

For ultrarelativistic $\beta \approx 1$ particle, near forward direction, $\hat{n} \cdot \vec{\beta} \approx 1$ flux received $\propto \left(1 - \hat{n} \cdot \vec{\beta}\right)^{-6}$.

But the power radiated is only $\propto \left(1 - \hat{n} \cdot \vec{\beta}\right)^{-5}$. Why?

The power/unit area $\hat{n} \cdot \vec{S}\Big|_{\text{ret}}$ received during $[t, t + \Delta t]$ is determined by retarded times $[t_e, t_e + \Delta t_e]$ corresponding to emission τ_0 's. Light received at $t + \Delta t$ had to travel a distance $\hat{n} \cdot \vec{v} \Delta t_e$ less than the light received at t, so $\Delta t = (1 - \hat{n} \cdot \vec{\beta}) \Delta t_e$.

Total energy emitted = total energy received, so power emitted is $(1 - \hat{n} \cdot \vec{\beta})$ times the power received. Natural to express things in terms of the emission time, t_e , with $t = t_e + R(t_e)/c$

The energy per unit area we receive is

$$E/A = \int dt \, \hat{n} \cdot \vec{S} \Big|_{\text{ret}} = \int dt' \, \hat{n} \cdot \vec{S} \Big|_{t'} \frac{d}{dt'} \left(t' + \frac{R(t')}{c} \right)$$
$$= \int dt' \, \hat{n} \cdot \vec{S} \Big|_{t'} \left(1 - \hat{n} \cdot \vec{\beta} \right).$$

So the expression which determines the energy distribution is

$$\frac{dP}{dA} = \frac{q^2}{4\pi cR^2} \frac{\left(\hat{n} \times \left[\left(\hat{n} - \vec{\beta}\right) \times \dot{\vec{\beta}}\right]\right)^2}{\left(1 - \hat{n} \cdot \vec{\beta}\right)^5}.$$
 (2)

 $\frac{dP}{dA} = \frac{q^2 \dot{v}^2}{4\pi c^3 R^2} \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^5}.$

For β close to 1 this is very strongly peeked in the forward direction. The maximum intensity is when

$$\frac{d}{dx} \left(\frac{1 - x^2}{(1 - \beta x)^5} \right) \Big|_{x = \cos \theta} = 0 = \frac{-2x}{(1 - \beta x)^5} + \frac{5\beta(1 - x^2)}{(1 - \beta x)^6}$$

SO

and

$$x = \cos \theta_{\text{max}} = \frac{\sqrt{1 + 15\beta^2} - 1}{3\beta}.$$

With
$$\beta = \sqrt{1 - \gamma^{-2}} \to 1 - 1/(2\gamma^2)$$
, $x \to 1 - \frac{1}{8\gamma^2}$ and $\theta_{\text{max}} \to 1/2\gamma$.

Physics 504.

$$\frac{dP}{dA} = \frac{8q^2\dot{v}^2}{\pi c^3 R^2} \gamma^8 \frac{(\gamma\theta)^2}{(1+\gamma^2\theta^2)^5}.$$

As an example, consider the linear accelerator at SLAC, which accelerates electrons to 50 GeV over a distance of 3 km. At the end, $\gamma_f = 50 \text{GeV}/0.511 \text{MeV} \approx 10^5$, and, as the travel has been vitually at the speed of light, $\Delta t = 10^{-5}$ s. Assuming the energy gain per meter is constant, $m_e c^2 \frac{d\gamma}{dt} = m_e c^2 \gamma^3 \beta \dot{\beta} = m_e c^2 \gamma_f / \Delta t$, so the final value of $\dot{\beta}$ is $1/\gamma_f^2 \Delta t = 10^{-5}/s$. The angle of maximum intensity is $\theta_{\text{max}} = 1/200,000 \text{ rad} = 4.1 \text{ seconds of arc}$, and the power per sterradian from this single electron at that angle is

$$\frac{2^{11}}{5^5\pi} \frac{e^2 \dot{\beta}^2}{c} \gamma^8 = 1.6 \times 10^{12} \text{ W},$$

just from one electron. Why so much?

Physics 504, Spring 2010 Electricity and Magnetism

Note this is not the power, it is the power/sterradian. The total power is

$$P \approx 2\pi R^2 \int_0^{\infty} \theta \, d\theta \, \frac{dP}{dA} = \frac{16q^2 \dot{v}^2}{c^3} \, \gamma^8 \int_0^{\infty} \theta \, d\theta \, \frac{(\gamma \theta)^2}{(1 + \gamma^2 \theta^2)^5}$$
$$= \frac{8q^2 \dot{v}^2}{c^3} \, \gamma^6 \int_0^{\infty} du \, \frac{u}{(1 + u)^5} = \frac{2q^2}{3c^3} \, \dot{v}^2 \, \gamma^6.$$

Another important special case is a circular storage ring, where the acceleration is perpendicular to the velocity.

Taking $\vec{\beta}$ in the z direction and $\vec{\beta}$ in the x, and using the usual spherical angles for $\hat{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, we may evaluate the numerator of (??) as

$$\left(\hat{n} \times \left[(\hat{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right] \right)^2 = \left(\hat{n} \cdot \dot{\vec{\beta}} (\hat{n} - \vec{\beta}) - \left[\hat{n} \cdot (\hat{n} - \vec{\beta}) \right] \dot{\vec{\beta}} \right)^2$$

$$= (\hat{n} \cdot \dot{\vec{\beta}})^2 (\hat{n} - \vec{\beta})^2 - 2(1 - \beta \cos \theta)(\hat{n} - \vec{\beta}) \cdot \dot{\vec{\beta}} (\hat{n} \cdot \dot{\vec{\beta}})$$

$$+ (1 - \beta \cos \theta)^2 (\dot{\vec{\beta}})^2$$

$$= (\hat{n} \cdot \dot{\vec{\beta}})^2 (1 - 2\beta \cos \theta + \beta^2 - 2(1 - \beta \cos \theta))$$

$$+ (1 - \beta \cos \theta)^2 (\dot{\vec{\beta}})^2$$

$$= \left[(\sin \theta \cos \phi)^2 (-\gamma^{-2}) + (1 - \beta \cos \theta)^2 \right] (\dot{\vec{\beta}})^2$$

$$= \left[(\sin \theta \cos \phi)^2 (-\gamma^{-2}) + (1 - \beta \cos \theta)^2 \right] (\dot{\vec{\beta}})^2$$

$$so \quad \frac{dP}{d\Omega} = \frac{e^2}{4\pi c^3} \frac{(\dot{\vec{v}})^2}{(1 - \beta \cos \theta)^3} \left[1 - \frac{\sin^2 \theta \cos^2 \phi}{(1 - \beta \cos \theta)^2} \right] .$$

Again this is strongly peaked in the forward-direction

$$\frac{dP}{d\Omega} \approx \frac{2e^2}{\pi c^3} \frac{\gamma^6(\dot{v})^2}{(1+\gamma^2\theta^2)^3} \left[1 - \frac{4\gamma^2\theta^2\cos^2\phi}{(1+\gamma^2\theta)^2} \right].$$

The total power radiated in all directions is, from Liénard,

$$P = \frac{2}{3} \frac{e^2}{c^3} (\dot{\vec{v}})^2 \gamma^4,$$

as $(\vec{\beta})^2 - (\vec{\beta} \times \vec{\beta})^2 = (\dot{\vec{\beta}})^2 (1 - \vec{\beta}^2) = \gamma^{-2} (\dot{\vec{\beta}})^2$. But do not be mislead into thinking this is weaker than in the case with $\dot{\vec{\beta}} \parallel \vec{\beta}$, where we had γ^6 instead of γ^4 , because it is very hard to accelerate in the direction of β . A 4-force F in the direction of $\vec{\beta}$ produces

$$\frac{d}{d\tau}mc\beta\gamma = F = mc\dot{\beta}(\gamma + \beta^2\gamma^3) = mc\dot{\beta}\gamma^3 \Longrightarrow \dot{\beta} = \frac{F}{mc\gamma^3},$$

while a force in the transverse direction has $mc\gamma\dot{\beta} = F$, or $\dot{\beta} = F/mc\gamma$. So the $(\dot{\vec{\beta}})^2$ is likely to be γ^4 bigger in the transverse case.

Physics 504, Spring 2010 Electricity and Magnetism

In particular, at the LHC, with 7 TeV protons travelling at roughly c around a 4.3 km radius circle have $\dot{\beta} = \omega \times \beta = 1.1 \times 10^4/\text{ s}$, 10^9 times bigger than the electrons at SLAC, even though their γ is a factor of 13 smaller than the γ of the electrons.

Note that for a given size ring, with ultrarelativistic particles travelling at essentially c, the angular velocity and therefore $\dot{\vec{v}}$ is fixed, so the power radiated is proportional to γ^4 or, for a fixed kind of particle, to E^4 . This becomes a serious problem at large energies, especially for electrons (as the power radiated is independent of mass for fixed γ).

Shapiro

Consider a particle in ultrarelativistic circular motion, with radius ρ . As its radiation is essentially confined to a direction $\delta\theta = 1/\gamma$, the arc of the circle during which it irradiates a given distant observer is of length $d = \rho/\gamma$, which it does in a time $\delta t = \rho/\gamma v$. This pulse of light has its leading edge travelling towards the observer a distance $D = c\rho/\gamma v$ during this time, while the trailing edge of the pulse is emitted at d, so the pulse has a length $D-d=(\rho/\gamma)(\beta^{-1}-1)\approx \rho/2\gamma^3$. Thus the duration of the received pulse is $\rho/2c\gamma^3$ which means it contains frequencies up to $\omega_c \sim (c/\rho)\gamma^3$. Thus synchrotrons are a good source of X-rays.