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Charged particle Energy Loss

Fast heavy (� me) charged particle interacting with
matter.
Collisions with electrons transfers lots of energy, not much
deviation of particle.
Collisions with nuclei, if m� mNucl, scattering
important but not much energy loss.

Consider first the scattering with electrons, of a projectile
with v, M , and q = ze, with E = Mγc2, P = Mβγc.
Ignore binding of electron in atom, and its initial velocity.
It has mass m and charge −e. M � m, so in projectile’s
rest frame, electron Coulomb scatters, with the
“well-known Rutherford scattering” cross section1.

1See apology in lecture notes
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dσ

dΩ
=
(
ze2

2vp

)2 1
sin4(θ/2)

, (1)

where p = mβγc is the momentum of the electron.
We want the change of the projectile’s momentum, so
need cross section in terms of momentum transfer rather
than angle:
Q2 = −(p′µ − pµ)2 > 0, which for elastic scattering will be

Q2 = 4p2 sin2(θ/2), dQ2 = 2p2 sin θ dθ,

so

dΩ = 2π sin θ dθ =
π

p2
dQ2,

dσ

dQ2
=

π

p2

dσ

dΩ
= 4π

(
ze2

vQ2

)2

.

Note I didn’t Lorentz transform the cross section, because
dσ is an area transverse to the relative velocity back to
the lab frame.
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In projectile’s frame, Pµ = (Mc,~0), pµ = (mcγ,−mγ~v),
so P · p = Mmc2γ, so β2 = (Mmc2/P · p)2. Energy lost to
electron is T = (p′ 0 − p0)c in the lab, where pµ = (mc,~0),
so mT = p · (p′ − p) = p · p′ − p2 = −1

2(p′ − p)2 = 1
2Q

2.
Replacing Q2 by 2mT on both sides of the cross section
equation,

dσ

dT
=

2πz2e4

mv2T 2
.

This formula will tell us how rapidly a swift projectile
looses energy, but its validity is limited:

1) T =
Q2

2m
= 2

p2

m
sin2

(
θ

2

)
≤ 2m(cβγ)2, so the cross

section for T > Tmax := 2m(cβγ)2 is zero. 2) Lower
bound: Unless the projectile gives up enough energy to
free the electron from the atom (or at least raise it to a
higher quantum state), no energy will be lost, and the
cross section should be zero. Call this energy ε.
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Energy loss dE/dx

Material has N atoms/unit volume, Z electrons/atom.
Projectile looses energy T ± dT/2 for each of ZNdxdσ/dT
electrons it scatters off with that dT , so

−dE
dx

= NZ

∫ Tmax

ε
T
dσ

dT
dT = 2πNZ

z2e4

mv2

∫ Tmax

ε

1
T
dT

= 2πNZ
z2e4

mv2
ln
(
Tmax
ε

)
= 2πNZ

z2e4

mv2
ln
(

2mv2γ2

ε

)
.

Lots of corrections to this:

Dirac spin ln
(

2mv2γ2

ε

)
→ ln

(
2mv2γ2

ε

)
− β2.

Energy loss < ε is not negligible, in fact it doubles dE/dx.
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Features of dE/dx

But basic features given correctly:

• For β � 1, pro-
portional to 1/v2, with
coefficient ∝ NZ or
the material’s density.
So loss per gram/cm2

is roughly material-
independent.

• For β ∼ 1, grows log-
arithmically. There-
fore a minimum ioniz-
ing value, somewhere
around βγ = 3. dE/dx from Jackson
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Coherent Effects
[Note: we are skipping section 2.]

For b� a ≈ N−1/3 interaction with polarizable medium
more appropriate than incoherent scattering by individual
atoms.
Assume ε(ω) but µ = 1 for material. Maxwell’s laws (in
Gaussian units) become:

~∇ · ~D = 4πρ (2)
~∇ · ~B = 0 (3)

~∇× ~B − 1
c

∂ ~D

∂t
=

4π
c
~J (4)

~∇× ~E +
1
c

∂ ~B

∂t
= 0 (5)

with
~B = ~∇× ~A, ~E = −~∇Φ− 1

c

∂ ~A

∂t
.
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Fourier transforming
Fourier transform everything:

F (~x, t) =
1

(2π)2

∫
d3k

∫
dωF (~k, ω)ei~k·~x−iωt,

we get

~E(~k, ω) = −i~kΦ(~k, ω) +
iω

c
~A(~k, ω)

~D(~k, ω) = −iε(ω)~kΦ(~k, ω) +
iωε(ω)
c

~A(~k, ω)

~B(~k, ω) = i~k × ~A(~k, ω)

so (2) and (4) become

ε(ω)k2Φ(~k, ω)− ωε(ω)
c

~k · ~A(~k, ω) = 4πρ(~k, ω)

−~k ×
(
~k × ~A(~k, ω)

)
+
ω

c
ε(ω)~kΦ(~k, ω)

−ω
2ε(ω)
c2

~A(~k, ω) =
4π
c
~J(~k, ω)
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Gauge invariance: Aµ → Aµ − ∂µΛ, or ~A→ ~A+ ~∇Λ,
Φ→ Φ− 1

c
∂Λ
∂t , is OK even in materials, so choose modified

Lorenz condition

ε

c

∂Φ
∂t

+ ~∇ · ~A = 0, or ~k · ~A(~k, ω) =
ωε(ω)
c

Φ.

Then we can write our equations as

ε(ω)k2Φ(~k, ω)− ω2ε2(ω)
c2

Φ(~k, ω) = 4πρ(~k, ω)

k2 ~A(~k, ω)− ω2ε(ω)
c2

~A(~k, ω) =
4π
c
~J(~k, ω)
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Interaction at large b
Projectile with~v, will be essentially unchanged (or only
slowly diminished)

ρ(~x, t) = zeδ3(~x−~vt), ~J((~x, t) = ~vρ(~x, t) = ze~vδ3(~x−~vt),
which means the fourier transformed source is

ρ(~k, ω) =
ze

(2π)2

∫
d3xdt δ3(~x− ~vt)e−i~k·~x+iωt

=
ze

(2π)2

∫
dt e−i(

~k·~v−ω)t =
ze

2π
δ(ω − ~k · ~v)

and ~J(~k, ω) = ~vρ(~k, ω). In Fourier space the equations for
Φ and ~A become trivial to solve:

Φ(~k, ω) =
2ze
ε(ω)

δ(ω − ~k · ~v)
k2 − ω2ε(ω)/c2

, ~A(~k, ω) =
~vε(ω)
c

Φ(~k, ω)

~E(~k, ω) = −i~kΦ(~k, ω) + i
ω

c
~A(~k, ω)

=
(
−i~k + i

ωε(ω)
c2

~v

)
Φ(~k, ω).
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Effect on atoms
Model of §7.5, electrons are harmonic oscillators,
frequency ωj , damping γj , oscillator “strength” fj , with∑
fj = Z. Response to ~E(ω):

~xj(ω) = − e

m

~E(ω)
ω2
j − ω2 − iωγj

.

From Jackson 7.51, the dielectric constant is

ε(ω) = 1 +
4πNe2

m

∑
j

fj
ω2
j − ω2 − iωγj

.

Each of these electrons will absorb an energy

∆E = −e
∫ ∞
−∞

dt~vj(t) · ~E(~x, t)

= − e

2π

∫ ∞
−∞
dt

∫ ∞
−∞
dω
(
−iωxj(ω)e−iωt

)∫ ∞
−∞
dω′ ~E∗(ω′)eiω

′t

The
∫
dt gives 2πδ(ω − ω′) so

∫
dω′ is trivial.



Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Charged
particle
Energy Loss

Heavy
projectile
hitting
electrons

∆E= ie

∫ ∞
−∞
dω ωxj(ω) ~E∗(ω) = 2eRe

∫ ∞
0
dω iωxj(ω) ~E∗(ω).

where because ~x(t) and ~E(t) are real, ~x(−ω) = ~x∗(ω),
~E(−ω) = ~E∗(ω), and

∫ 0
−∞ can be folded into

∫∞
0 .

Take ~v ‖ x, look at atom at (0, b, 0), which feels
~E(ω) =

1
(2π)3/2

∫
d3k ~E(~k, ω)eik2b.

The energy absorbed by this atom is

−∆E =
2e2

m

∑
j

fj Re
∫ ∞

0
dω

iω| ~E|2

ω2
j − ω2 − iωγj

,

and as there are 2πNbdb atoms per unit distance along
the particle’s path, the energy loss per unit distance is

dE

dx
=
∫ ∞

0
b dbRe

∫ ∞
0

dω iω| ~E|2 4πNe2

m

∑
j

fj
ω2
j − ω2 − iωγj

=
∫ ∞

0
b dbRe

∫ ∞
0

dω iω| ~E|2 (ε(ω)− 1) .
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~E(~x = (0, b, 0), ω)

=
−i

(2π)3/2

∫
d3keik2b

(
~k−ωε(ω)

c2
~v

)
2ze
ε(ω)

δ(ω − k1~v)
k2 − ω2ε(ω)/c2

=
−i2ze

(2π)3/2vε(ω)

∫ ∞
−∞

dk2 e
ik2b

∫ ∞
−∞

dk3(
~k − ωε(ω)

c2
~v

)
1

ω2/v2 + k2
2 + k2

3 − ω2ε(ω)/c2
,

where k1 = ω/v. For E1 this gives

E1(ω) =
−i2zeω

(2π)3/2v2ε(ω)

(
1− ε(ω)β2

) ∫ ∞
−∞

dk2 e
ik2b∫ ∞

−∞
dk3

1
ω2/v2 + k2

2 + k2
3 − ω2ε(ω)/c2

=
−izeω√
2πv2ε(ω)

(
1− ε(ω)β2

) ∫ ∞
−∞

dk2 e
ik2b 1√

k2
2 + λ2

where λ2 =
ω2

v2
− ω2ε(ω)

c2
=
ω2

v2

(
1− β2ε(ω)

)
.
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Note whenever necessary ε should be considered to have a
positive imaginary part. This can be evaluated2

E1(ω) = −i
√

2
π

zeω

v2

(
1

ε(ω)
− β2

)
K0(λb).

Next, we turn to E2 and E3. First

E2(ω) =
−ize√
2πvε(ω)

∫ ∞
−∞

dk2 e
ik2b k2

1√
λ2 + k2

2

=
ze

v

√
2
π

λ

ε(ω)
K1(λb)

2Abramowitz and Stegun tell us

Kν(xz) =
Γ(ν+ 1

2 )(2z)ν

√
πxν

R∞
0

cos(xt)dt

(t2+z2)
ν+ 1

2
. Expand the cosine in

exponentials and rewrite the second term as the extension of the
first for ∞ < t < 0, to get

R∞
−∞ dxe

ibx(x2 + λ2)−1/2 = 2K0(λb). The
same integral with an extra x (or k2) in the integrand can be found
as the derivative with respect to b, which is 2iλK1(λb), as
K′0(z) = −K1(z) (9.6.27).
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E3(ω) =
−ize√
2πvε(ω)

∫ ∞
−∞

dk2 e
ik2b∫ ∞

−∞

k3 dk3

ω2/v2 + k2
2 + k2

3 − ω2ε(ω)/c2
= 0

where E3 = 0 by symmetry.

The energy loss due to impact parameters larger than b0 is(
dE

dx

)
b>b0

=
∫ ∞
b0

bdbRe
∫ ∞

0
−iωε(ω)| ~E(ω)|2dω

=
2
π

z2e2

v2
Re
∫ ∞

0
dω (−iω)ε(ω)

∫ ∞
b0

b db[
ω2

v2

(
1

ε(ω)
− β2

)2

K2
0 (λb) +

λ2

ε2(ω)
K2

1 (λb)
]

The term in [ ] is(
1

ε(ω)
− β2

)
ω2

v2ε(ω)
[(

1− β2ε(ω)
)
K2

0 −K2
1

]
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The integral over impact parameter b can be done, as∫ ∞
a

x dxK2
0 (x) =

1
2
a2
(
K2

1 (a)−K2
0 (a)

)
∫ ∞
a

x dxK2
1 (x) =

1
2
a2
(
K2

0 (a)−K2
1 (a)

)
+ aK0(a)K1(a).

I don’t quite get this, but Jackson claims(
dE

dx

)
b>b0

=
2
π

z2e2

v2
Re
∫ ∞

0
dω (iωλ∗a)K1(λ∗a)K0(λa)(

1
ε(ω)

− β2

)
.

This evaluation is better than the free-electron one for
large impact parameter b� a, but not for b ≤ a. Below
some cutoff b0 we use the previous free-electron
calculation with ε the energy loss corresponding to b0.
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From (1),

dσ = 2πbdb = 2π sin θdθ
(
ze2

2vp

)2 1
sin4(θ/2)

= 2π
dQ2

2p2

(
ze2

2vp

)2(4p2

Q2

)2

= 2π
4p2

m

dT

T 2

(
ze2

2vp

)2

so b2 =
(

2ze2

v

)2 1
2mT

.

[Note: the above is my own, Jackson doesn’t discuss this.]
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