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Lecture 18 April 5, 2010

Darwin Lagrangian

Particle dynamics: ~xj(t) evolves by ~Fk→j(~xj(t), ~xk(t)),
depends on where other particles are at the same instant.
Violates relativity!
If the forces are given by a potential energy
V (~xj(t), ~xk(t)), that also violates relativity, unless
V ∝ δ(~xj − ~xk). Not very useful.
But we know how to treat charged particles interacting
electromagnetically if they are not moving too fast. We
learned as freshmen how to do the lowest order (c →∞):

V (~xj , ~xk) =
qjqk

|~xj − ~xk| and T =
1
2

∑
mj~v

2
j .

This encapsulates the effect of the ~E one particle
produces on the other.
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To next order

In our relativistic treatment

Lint =
∑

j

qj

(
−Φ(~xj) +

1
c
~uj · ~A(~xj)

)
,

and Φ(~xj) =
∑

k

qk

|~xj − ~xk| is the c →∞ limit for the

scalar potential.

Magnetic forces require moving particles to be produced,
and moving particles to feel their effect. So these are
v2/c2 effects. To this order, Φ and ~A depend on choice of
gauge. Choose Coulomb (~∇ · ~A = 0), not Lorenz, because
then ∇2Φ = −4πρ, and Φ is determined by instantaneous

information: Φ(~r, t) =
∫

d3r′
ρ(~r ′, t)
|~r −~r ′| to all orders in v/c!
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Magnetic interaction
From ∂σF σj = 4πJ j/c we have

1
c2

∂2

∂t2
~A−∇2 ~A + ~∇

(
1
c

∂

∂t
Φ + ~∇ · ~A

)
= 4π ~J/c.

The ~∇ · ~A is zero in Coulomb gauge. Working accurate to
order (v/c)2 we may drop the 1

c2
∂2

∂t2
~A term, as ~A is

already order (v/c)1. Thus we may take

∇2 ~A = −4π

c
~J +

1
c
~∇ ∂

∂t
Φ.

Particle j contributes
qj~vjδ

3(~x ′ − ~xj) to ~J(~x ′) and
qj

|~x ′ − ~x ′j |
to Φ(~x ′),

so it contributes qj
~vj · (~x ′ − ~xj)
|~x ′ − ~xj |3 to

∂Φ
∂t

.

The Green’s function for Laplace’s equation is 1/|~x− ~x ′|,
which we apply to the right hand side:
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~A(~x) =
∫

d3x′

|~x− ~x ′|
(

1
c

~J(~x ′)− 1
4πc

~∇ ′ ∂

∂t
Φ(~x ′)

)

=
∫

d3x′

|~x− ~x ′|
[
qjvj

c
δ3(~x ′ − ~xj)

− qj

4πc
~∇ ′

(
~vj · (~x ′ − ~xj)
|~x ′ − ~xj |3

)]

=
qj~vj

c|~x−~xj | +
qj

4πc

∫
d3x′

(
~vj · (~x ′−~xj)
|~x ′−~xj |3

)
~∇ ′ 1
|~x−~x ′|

where we have integrated by parts and thrown away the
surface at infinity. The gradient ~∇ ′ ∼ −~∇ action on a
function of ~x− ~x ′, so we can pull ~∇ out of the integral.
Let ~r = ~x− ~xj and ~y = ~x ′ − ~xj . Then

~A(~x) =
qj~vj

c|~r| −
qj

4πc
~∇

∫
d3y

~vj · ~y
|~y|3

1
|~y − ~r|
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The integral can be done by choosing z ‖ ~r and ~vj in the
xz plane:∫

d3y
~vj · ~y
|~y|3

1
|~y − ~r|

=
∫ ∞

0
y2dy

∫ π

0
dθ sin θ

∫ 2π

0
dφ

y(cos θvjz + sin θ cos φvjx)
y3

1√
y2 + r2 − 2yr cos θ

The φ integral kills the vjx term and then what remains is
2πvjz times∫ ∞

0
dy

∫ 1

−1
du

u√
y2 + r2 − 2yru

= 1,

though this integral is not as straightforward as Jackson
claims. Writing vjz = ~vj · ~r/r, we have

~A(~r) =
qj

c

[
~vj

|~r| −
1
2

~∇
(

~vj · ~r
r

)]
.
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Applying the gradient, we get

~Aj(~xk) =
qj

2c|~xj − ~xk|
[
~vj +

(~xk − ~xj)~vj · (~xk − ~xj)
|~xk − ~xj |

]
.

Multiplying by qk~vk/c to get the appropriate contribution
to Lint, and correcting the free-particle Lagrangian,
−mc2γ−1 + mc2 ≈ 1

2mv2 + 1
8mv4/c2, we get the Darwin

Lagrangian

LDarwin =
1
2

∑
j

mjv
2
j +

1
8c2

∑
j

mjv
4
j −

1
2

∑
j 6=k

qjqk

rjk

+
1

4c2

∑
j 6=k

qjqk

rjk
[~vj · ~vk + (~vj · r̂jk)(~vk · r̂jk)] ,

where of course ~rjk := ~xj − ~xk, rjk := |~rjk|, and
r̂jk = ~rjk/rjk.
This is used in atomic physics (with ~v → ~α for Dirac) and
in plasma physics.
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The Proca Lagrangian
For Maxwell’s electromagnetism:

LEM = − 1
16π

FµνFµν − 1
c
JµAµ.

Does not give complete equations of motion Aµ.
Consider adding a term proportional to A2:

LProca = − 1
16π

FµνFµν +
µ2

8π
AµAµ − 1

c
JµAµ,

known as the Proca Lagrangian. Still have
Fµν := ∂µAν − ∂νAµ, not an independent field. ∴
homogeneous Maxwell equations still hold (as F = dA).
Extra term doesn’t change P µ

α (no ∂αAβ dependence), so
change in equations of motion is just from
∂L/∂Aµ = (µ2/4π)Aµ, and

∂βFβα + µ2Aα =
4π

c
Jα.

One consequence comes from taking the 4-divergence of
this equation:
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Proca Equations of Motion

∂α∂βFβα︸ ︷︷ ︸
0

+µ2∂αAα =
4π

c
∂αJα︸ ︷︷ ︸

0

,

where the first vanishing is by symmetry and the second
assumes charge is still conserved, to the continuity
equation ∂αJα = 0 still holds. Thus
∂αAα = 0 is an equation of motion, not a gauge condition!
Then

∂βFβα = Aα,
(

+ µ2
)
Aα =

4π

c
Jα.

In the absence of sources, this has solutions as before,∑
~k

(
Aµ

~k +
ei~k·~x−iω~k

t + Aµ
~k−ei~k·~x+iω~k

t
)

,

but with ω2 = c2(~k 2 + µ2).
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Particle content

Quantum mechanically we know ~p = −i~~∇ ∼ ~~k and
E = i~∂/∂t = ±~ω, so ω2 = c2(~k 2 + µ2) tells us we have
particles for which E2 = P 2c2 + µ2

~
2c2. Of course

quantum field theoriests take ~ = 1 and c = 1, so this
represents a massive photon with mass µ.

Static solution:

If we consider a point charge at rest and look for the
static field it would generate, we need to solve

∇2Φ + µ2Φ = −4πqδ3(~r)

or
∂

∂r

(
r2 ∂Φ

∂r

)
+ r2µ2Φ = −qδ(r).

Away from r = 0 this clearly requires rΦ(r) = Ce−µr.
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So Φ(r) = C
e−µr

r
, and Gauss’s law tells us

−4πq = 4πR2 dΦ/dr|R + µ2

∫
r<R

Φ −→
R→0

4πC,

so C = q and

Φ(~x) = q
e−µr

r
, with r = |~x|.

This is the well-known Yukawa potential, which nuclear
physicists had found was a good fit to the binding of
nucleons in a nucleus, leading Yukawa to propose the
existance of a massive carrier of the nuclear force, which
we now know to be the π meson.

Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Darwin and
Proca
Lagrangians

The Darwin
Lagrangian

The Proca
Lagrangian

Superconductor

~A in Superconductors
In the BCS theory of superconductivity, electrons form
pairs, and each pair acts like a boson. So the quantum
mechanical state that each pair is in can be multiply
occupied, and superconductivity occurs when states
develop macroscopic occupation numbers, � 1. The wave
function ψ(~x) describing these particles is a complex
function, with the density of particles n(~x) = ψ∗ψ, so
ψ = n(~x)eiθ(~x). We may approximate n(~x) as being
roughly constant.
The velocity of these particles is related to the canonical
momentum by

~v =
1
m

(
~P − q

c
~A
)

which can be viewed as an operator acting between ψ∗

and ψ. It is the canonical momentum ~P which acts like
−i~~∇. Thus the current density is

~J = qψ∗~vψ =
nq

m

(
~∇θ − q

c
~A
)
.
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If we take the curl of both sides of
~J =

nq

m

(
~∇θ − q

c
~A
)
,

we get

~∇× ~J = −nq
2

mc
~∇× ~A = −nq

2

mc
~B, (1)

as ~∇× ~∇θ = 0. This equation doesn’t quite say

~J = −nq
2

mc
~A, (2)

but it does say, in a simply connected region, that the
difference is the gradient of something, and as such a
gradient could be added to ~A by a gauge transformation,
we might as well assume (2), which is known as the
London equation. This gauge is still compatible with
Lorenz (which can be viewed as determining A0), so we
have

∇2 ~A− 1
c2
∂2 ~A

∂t2
= −4π

c
~J =

4πnq2

mc2
~A,

which is the Proca equation with µ2 = 4πnq2
/
mc2.
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London Penetration Depth

At the boundary of the superconductor, if no current is
crossing the boundary, we must have ~n · ~A = 0. If we look
for a static solution for a planar boundary ⊥ z, uniform
along the boundary, we have A ∝ e−µz. The London
penetration depth is

λL :=
1
µ

=

√
mc2

4πnq2
.

With q = −2e and m = 2me for the electron pair, and
taking n as the density of valence electrons, the
penetration depth is of the order of tens of nanometers.

As the A field is not penetrating further than that into the
medium, any external magnetic field has been excluded.
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Vortex Lines

But magnetic field lines can enter the medium if our
assumption of being able to do away with ~∇ · ~A by a
gauge transformation is not correct. That could happen if
the region of the superconductor is not simply connected
— that is, a flux line could enter and destroy the
superconducting region around which θ is incremented by
a multiple of 2π.
This is called a vortex line, and corresponds to a
quantized amount of flux, as∮

~A · d` = 2πN~c/q =
∫

S

~∇× ~A = ΦB, with N ∈ Z.

With q = −2e, the quantum of flux is hc/2e.


