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Lecture 11 March 1, 2010

Last time we mentioned scattering removes power from
beam. Today we treat this more generally, to find

I the optical theorem:
I the relationship of the index of refraction and the

forward scattering amplitude.
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The Optical Theorem

The optical theorem relates the total cross section to the
forward scattering amplitude.
In Quantum Mechanics, this is “conservation” of
probability. Here — conservation of energy.
We do this differently from Jackson.
Consider scatterer of finite size in an incident plane wave:

~Ei = E0~εi e
i~ki·~x−iωt

~Bi =
1

ω
~ki × ~Ei =

1

ω
~ki × ~εi E0 ei~ki·~x−iωt

Assume scattering is linear, time-invariant physics, so
everything ∝ e−iωt, make implicit.
scattering amplitude ~f(~k,~ki), so

~Es(~x) =
eikr

r
~f(~k,~ki)E0

~Bs(~x) =
1

ω
~k × ~Es =

eikr

ωr
E0

~k × ~f(~k,~ki).
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Linearity assures frequency unchanged and k = |~k| = |~ki|,
elastic scattering.

The total fields are ~E = ~Ei + ~Es and ~B = ~Bi + ~Bs.

Consider the power flowing past planes ⊥ ~ki, one way in
front of the scatterer, one way in back.
The total power removed from the incident beam =
incident power flux times σtot, which includes absorption
and scattering cross sections.

Take ~ki ‖ ẑ. Total power across z downstream is

P =
1

2µ0

∫
ρ dρ dφRe

[(
~Ei + ~Es

)
×

(
~B∗

i + ~B∗
s

)]
z
.

The ~Ei × ~B∗
i part of this is what would have been the

power without any scattering. Each of ~Es and ~B∗
s falls off

as 1/r, so the product falls off as 1/r2 and is negligible for
large r. Thus if ∆P is the change in the power of the
beam (−δP is the power lost),

∆P =
1

2µ0

∫
ρ dρ dφRe

[
~Ei × ~B∗

s + ~Es × ~B∗
i

]
z
.
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∆P =
1

2µ0

∫
ρ dρ dφRe

[
~Ei × ~B∗

s + ~Es × ~B∗
i

]
z

=
1

2ωµ0

|E0|2

r

∫
ρ dρ dφ

Re
[
~εi ×

(
~k × ~f∗(~k,~ki)

)
e−ikr+i~ki·~x

+eikr−i~ki·~x ~f(~k,~ki)×
(
~ki × ~εi

∗
)]

z

For large z, ρ ∼
√

z so the angle goes to zero, ~k = ~ki,
kr − ~ki · ~x = k(r − z) = k(

√
z2 + ρ2 − z) ≈ kρ2/2z.∫

ρ dρ dφ
eikr−i~ki·~x√

z2 + ρ2
≈ 2π

z

∫ ∞

0
ρ dρ eikρ2/2z

=
2π

z

∫ ∞

0
du eiku/z = i

2π

k
.
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Thus

∆P =
π

∣∣E2
0

∣∣
ωµ0k

Re
(
−i~εi · ~f∗(~ki,~ki)~k + i~εi · ~k ~f∗(~ki,~ki)

i~εi
∗ · ~f(~ki,~ki)~ki − i(~ki · ~f(~ki,~ki))~εi

∗
)

z

=
π

∣∣E2
0

∣∣
ωµ0

Re
(
−i~εi · ~f∗(~k,~ki) + 0 + i~εi

∗ · ~f(~ki,~ki)− 0
)

= −
2π

∣∣E2
0

∣∣
ωµ0

Im
(
~εi

∗ · ~f(~ki,~ki)
)

.

The power flux in the incident beam is

1

2µ0
Re ( ~Ei × ~B∗

i )z =
|E0|2

2ωµ0
Re

(
~εi ×

(
~k × ~εi

))
z

=
|E0|2k
2ωµ0

so the total cross section must be

σTot =
−2∆Pωµ0

|E0|2k
=

4π

k
Im

(
~εi

∗ · ~f(~ki,~ki)
)

.

This is the optical theorem.
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Index of Refraction

Consider thin slab, thickness d
Number density N

incident wave ~Ei = E0~εie
i~ki·~x,

~ki = kêz, observe from far
downstream, z0.
Each d3x in slab has Nd3x scat-
terers, so

0 zz

x

k

k

0
d

θ

w
a
v
e
fr
o
n
t

ρ
R

i

d ~Es =
eikR

R
~f(k, θ, φ;~ki)E0e

i~ki·~xNd3x

~Es = NE0

∫ d

0
dzeikz

∫ 2π

0
dφ

∫ ∞

0
ρ dρ

eikR

R
~f

(
k, cos−1

(
z0−z

R

)
, φ; kêz

)
As R2 = ρ2 + (z0 − z)2, ρ dρ = R dR, so
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∫ ∞

0
ρ dρ

eikR

R
~f

(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)
=

∫ ∞

|z0−z|
dR eikR ~f

(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)
=

1

ik
eikR ~f

(
k, cos−1

(
z0 − z

R

)
, φ; kêz

)∣∣∣∣∞
R=|z0−z|

− 1

ik

∫ ∞

|z0−z|
eikR dR

d

dR
~f

(
k, cos−1

(
z0−z

R

)
, φ; kêz

)
where we integrated by parts for the last expression. The
last term is

1

ik

∫ ∞

|z0−z|
eikR dR

z0 − z

R2

d

d cos θ
~f (k, θ, φ; kêz)

which, provided the indicated derivative is not singular,
falls off like 1/R.
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Dropping that term, we have

~Es = i
NE0

k

∫ d

0
dzeikz

∫ 2π

0
dφeik(z0−z) ~f (k, 0, φ; kêz)

= 2πi
NE0d

k
eikz0 ~f (k, 0, 0; kêz)

Thus the total electric field at points far beyond the slab
is

~E(~x) = E0e
ikz

(
~εi +

2πiNd

k
~f(k, 0)

)
,

This is a plane wave, and exact solution of the free space
wave equation, though with shifted phase, amplitude, and
polarization. Thus it holds right up to back edge of the
slab.
What was the effect of the slab? Project on original
polarization — initial ~εi

∗ · ~E has been multiplied by

1 + 2πik−1N~εi
∗ · ~f(k, 0)dz.
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~εi
∗ · ~E(~x) = e2πik−1N~εi

∗·~f(k,0)zE0e
ikz,

That is, our wave has k replaced by nk, with

n = 1 +
2πN~εi

∗ · ~f(k, 0)

k2
,

which is the index of refraction.
Conclusion: The index of refraction is given by the
forward scattering amplitude.
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Caveats

We assumed each scatterer feels only the incident field.
Better treatment says evaluate ~f(~k) at the wavenumber in
the medium, not vacuum.

Absorption will give imaginary part to
k = nki = Re k + i

2αki with

α = Nσtot =
4πN

k
Im

(
~εi

∗ · ~f(~k,~k)
)

.

Only full ~f will satisfy the optical theorem.
Approximations suitable for Im f in the forward direction
may not work for σtot ∝ |f2|.
Example: small lossless dielectric sphere, f is real! So
there is scattering but zero total cross section — can’t be.
In §7.10D Kramers-Kronig said Re εr − 1 is given by

∫
dω′

of Im εr(ω
′), so a purely real εr can only be 1.


