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I We will first finish up the ` = 1 term from the Green
function. This is giving us magnetic dipole and
electric quadripole contributions.

I We will briefly describe a more consistent way of
doing the angular expansion, using “vector spherical
harmonics”. This will more cleanly separate
magnetic multipoles and electric multipoles, and is
consistent with what we did for the spherical cavity.

I We will skip most of the rest of chapter 9 and go on
to scattering of the electromagnetic waves.
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Vector Spherical Harmonics

Last time, used scalar Green function on vector source.
This mixes spherical expansion with vectors in an
awkward way,
For example, ` = 1 mixed magnetic dipole and electric
quadripole source contributions.

In doing spherical cavity, we expanded scalars, ~r · ~E and
~r · ~H. Each satisfies Helmholtz away from sources, so for
r > d they are expanded in spherical bessels times
spherical harmonics, as we learned in lecture 5:

~r · ~H
(M)
`m =

`(` + 1)
k

g`(kr)Y`m(θ, φ), ~r · ~E(M) = 0

or ~r · ~E
(E)
`m = −Z0

`(` + 1)
k

g`(kr)Y`m(θ, φ), ~r · ~H(E) = 0

for magnetic multipole modes (M) or electric multipole
modes (E).
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In either case g` satisfies the spherical Bessel equation
(

∂2

∂r2
+

2
r

∂

∂r
− `(` + 1)

r2
+ k2

)
g`(kr) = 0

with solutions outside the source region proportional to
h

(1)
` (kr) for outgoing waves. We found the transverse

components are given by

~E
(M)
`m = Z0g`(kr)~LY`m, ~H

(M)
`m = − i

kZ0

~∇× ~E
(M)
`m

or ~H
(E)
`m = g`(kr)~LY`m(θ, φ), ~E

(E)
`m = i

Z0

k
~∇× ~H

(E)
`m

where ~L = −i~r × ~∇.

For ` ≥ 1, define: ~X`m(θ, φ) :=
1√

`(` + 1)
~LY`m(θ, φ).

These are called the vector spherical harmonics, and
provide good basis functions for expanding our fields.
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Orthogonality Properties

∫
dΩ ~X∗

`0m0 · ~X`m =
1√

`(` + 1)
√

`′(`′ + 1)

×
∫

dΩ
[1
2

(
L∗

+Y ∗
`0m0

)
(L+Y`m)

+
1
2

(
L∗
−Y ∗

`0m0
)
(L−Y`m)

+ (L∗
zY

∗
`0m0) (LzY`m)

]

=
∫

dΩ
Y ∗

`0m0
[

1
2L−L++1

2L+L−+L2
z

]
Y`m√

`(` + 1)
√

`′(`′ + 1)

=

√
`(` + 1)√
`′(`′ + 1)

∫
dΩ Y ∗

`0m0Y`m

= δ``0δmm0

where
∫

dΩ =
∫ π
0 sin θdθ

∫ 2π
0 dφ, and we have used
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~L 2 = 1
2L−L+ + 1

2L+L− + L2
z,

∫
dΩ(~LΦ)∗Ψ =

∫
dΩΦ∗~LΨ,

and
∫

dΩY ∗
`0m0Y`m = δ``0δmm0 .

So the vector spherical harmonics are an orthonormal set:
∫

dΩ ~X∗
`0m0 · ~X`m = δ``0δmm0 .

We also have∫
dΩ ~X∗

`0m0 ·
(
~r × ~X`m

)

=
1√

`(` + 1)
√

`′(`′ + 1)

∫
dΩ

(
~L∗Y ∗

`0m0
)
· (~r × ~L)Y`m

1√
`(` + 1)

√
`′(`′ + 1)

∫
dΩY ∗

`0m0~L · (~r × ~L)Y`m

1√
`(` + 1)

√
`′(`′ + 1)

∫
dΩY ∗

`0m0~r · (~L× ~L)Y`m = 0.

because ~L× ~L = i~L, so ~r · (~L× ~L) = ~r · ~L = 0.
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The justification for claiming ~r · ~E and ~r · ~H satisfy the
Helmholtz equation required them to be divergenceless,
which ~r · ~E is not in the presence of sources.
The trick is to evaluate ~E ′ := ~E + i ~J/ωε0, so ~r · ~E ′ and
~r · ~H do satisfy inhomogeneous Helmholtz equations with
sources given by ρ and ~J , with the latter supplemented by
any intrinsic magnetization.
This is somewhat messy, given in section 9.10, but we will
not elaborate.

A major use has the sources given by quantum
mechanical operators for atomic or nuclear structure, and
the vector potential is then a wave function for outgoing
photons, giving a decay probabilities rather than
radiation power flux. But we will skip this as well, and
proceed to discuss scattering of electromagnetic waves.
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Scattering of waves
Currents create fields, but fields affect the motion of
charges too. Mutual reaction.
Scattering by small scatterers:
Incident wave in direction n̂i: 1

~Einc = ~εiEie
ikn̂i·~x, ~Hinc = n̂i × ~Einc/Z0,

with e−iωt understood, k = ω/c.
If scatterer is small, its radiation is dominated by dipole
terms, electric dipole moment ~p and magnetic dipole
moment ~m.
Far from scatterer, r � λ,

~Esc =
k2eikr

4πε0r
[(r̂ × ~p)× r̂ − r̂ × ~m/c] .

~Hsc = r̂ × ~Esc/Z0.

Wave radiates in all directions.

1Notation changes from Jackson: ~ε0 → ~εi, and i generally for
incident wave. His ~n→ r̂.
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Cross section
Scattering is measured by cross sections.

For classical particle dynamics,
dσ

dΩ
is the area of the

incident beam which gets scattered into the solid angle
dΩ.
For wave,

dσ

dΩ
=

power scattered into dΩ
incident flux

.

Flux
1
2
r̂ ·

(
~Esc × ~H∗

sc
)

=
1

2Z0
r̂ ·

(
~Esc ×

(
r̂ × ~E∗

sc
))

=

1
2Z0

~Esc · ~E∗
sc, as r̂ · ~Esc = 0. But the outgoing wave

consists of two polarizations, and we can ask what the
cross section is for a given polarization, ~ε, for an incident
wave with polarization ~εi. So

dσ

dΩ
(r̂,~ε; n̂i,~εi) = r2

∣∣∣~ε ∗ · ~Esc
∣∣∣2∣∣∣~ε∗i · ~Einc

∣∣∣2
,
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dσ

dΩ
(r̂,~ε; n̂i,~εi) =

k4

(4πε0Ei)2
|~ε ∗ · ~p + (r̂ × ~ε ∗) · ~m/c|2 ,

where we need to know the ~p and ~m induced by ~Einc.

If scatterers are small (� λ), polarization response should

be quasi-static, independent of ω, so
dσ

dΩ
∝ k4 ∝ ω4. This

is known as Rayleigh’s law.
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Dielectric Sphere
Last term you found (Jackson 4.56) that a non-magnetic
dielectric sphere of radius a has a static induced dipole
moment

~p = 4πε0

(
εr − 1
εr + 2

)
a3 ~Einc,

and of course ~m = 0. So

dσ

dΩ
(r̂,~ε; n̂i,~εi) = k4a6

∣∣∣∣εr − 1
εr + 2

∣∣∣∣
2

|~ε ∗ · ~εi|2 .

The scattered wave has the electric field in the plane of
the incident polarization and r̂; if ~ε ∗ ⊥ ~εi the amplitude is
zero.
If the incident wave is unpolarized, say coming in the z
direction, we may take the average over polarization in φ,
~εi = (cos φ, sinφ, 0). If we are looking at an angle θ, say
with r̂ = (sin θ, 0, cos θ), the two polarization vectors are
~ε‖ = (cos θ, 0, sin θ) in the scattering plane and
~ε⊥ = (0, 1, 0) perpendicular to it.
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Then
∣∣∣~ε ∗‖ · ~εi

∣∣∣2 = cos2 θ cos2 φ and |~ε ∗⊥ · ~εi|2 = sin2 φ, with

average values (over φ of 1
2 cos2 θ and 1

2 respectively. So

dσ‖
dΩ

=
k4a6

2

∣∣∣∣εr − 1
εr + 2

∣∣∣∣
2

cos2 θ,

dσ⊥
dΩ

=
k4a6

2

∣∣∣∣εr − 1
εr + 2

∣∣∣∣
2

.

The polarization is defined by the difference over the sum,

Π(θ) :=

dσ⊥
dΩ

− dσ‖
dΩ

dσ⊥
dΩ

+
dσ‖
dΩ

(
=

sin2 θ

1 + cos2 θ
for dielectric sphere

)

Physics 504,
Spring 2010
Electricity

and
Magnetism

Shapiro

Multipole
Expansion

Scattering

Unpolarized and Total Cross Sections

If we don’t measure the polarization of the scattered light,
the unpolarized cross section is the sum of the two,

dσ

dΩ
=

k4a6

2

∣∣∣∣εr − 1
εr + 2

∣∣∣∣
2 (

1 + cos2 θ
)

and the total cross section is the integral of this over
dΩ =

∫ π
0 sin θdθ

∫ 2π
0 dφ,

σ = πk4a6

∣∣∣∣εr − 1
εr + 2

∣∣∣∣
2 ∫ 1

−1
d(cos θ)

(
1 + cos2 θ

)

=
8π

3
k4a6

∣∣∣∣εr − 1
εr + 2

∣∣∣∣
2

.

We will skip subsection C.


