Physics 504 Ordinary Homework #6 Due: March 31, 2011

1. We have derived that if \mathcal{O}' is moving in the x direction with velocity $c\beta$ relative to \mathcal{O} , the relation between the two observers' coordinates of an event are related by

$$\begin{array}{rcl} x'^{0} & = & \gamma \left(x^{0} - \beta x^{1} \right), & & & x'^{2} & = & x^{2} \\ x'^{1} & = & \gamma \left(x^{1} - \beta x^{0} \right), & & & x'^{3} & = & x^{3} \\ \end{array}$$

where we have assumed the axes are parallel.

(a) If instead the velocity $c\vec{\beta}$ of \mathcal{O}' with respect to \mathcal{O} is in an arbitrary direction, by rotational invariance it is clear that

$$x'^{0} = \gamma \left(x^{0} - \vec{\beta} \cdot \vec{x} \right),$$

and it is also clear that the components of \vec{x}' and \vec{x} parallel to $\vec{\beta}$ transform as x^1 did. This is not enough to completely determine $A^{\mu}{}_{\nu}$, but if we also impose that the spatial coordinates perpendicular to $\vec{\beta}$ are unchanged, the relationship is uniquely defined. Show that the result is Jackson's second equation 11.19.

(b) From this, derive the expression for $\vec{v}' = d\vec{x}'/dt' = cd\vec{x}'/dx'^0$ in terms of $\vec{v} = d\vec{x}/dt$ and $\vec{\beta}$, and show that the components parallel and perpendicular to $\vec{\beta}$ are given by Jackson's 11.31, with some change of notation and observing that we can interchange \mathcal{O} and \mathcal{O}' by reversing the direction of $\vec{\beta}$.

(c) Use the result of (a) to show that the lorentz transformation is given by $A^{\mu}{}_{\nu}$ shown in Jackson equation 11.98.

2. Do Jackson problem 11.8a