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Physics 464/511 Lecture Q Fall, 2016

1 Parallel Transport

Consider a manifold with a vector or a 1-form defined at each point. Such an
object might be a physical field, which would have field equations involving
derivatives of this vector quantity. How can we tell on a curved manifold
whether a vector V = V µ(xA)∂µ at the point A is the same or different from
V at B, V µ(xB)∂µ? The näıve thing would be if V µ(xA) = V µ(xB). But the
V µ’s are chart dependent and such a statement of equality of components
at different points can be true for one chart and not another, and has no
real meaning for the manifold. It is also the wrong requirement even for the
simple example of a two dimensional Euclidean space in polar coordinates,
for a vector in the ρ direction for φ = 0 is completely different from one of
the same magnitude in the ρ direction at φ = π/2.

This is true even for A and B very near each other. By definition, all
charts agree on whether two directions differ by a finite angle as A→ B, but
not on the rate. Thus lim

xB→xA

V µ(xB) is well defined, but not ∂νV
µ(xB), in

the sense that it is chart-dependent.
Thus an arbitrary manifold has no means of comparing vectors at different

points, unless there is an extra structure placed on the manifold telling how
to move a coordinate system from point A to a nearby point B.

Let the equivalence principle help us out, by giving us a chart1 C ′ = {ξα}
of a neighborhood of the event A which is cartesian and inertial at A.
Then g′αβ(xA) = ηαβ and g′αβ,γ(xA) = 0. A vector V = V µ∂µ = V ′α∂′α
defined at A is parallel transported an infinitesimal distance from A by
holding its coordinates fixed, because that’s how one parallel transports
in flat space cartesian coordinates. Thus if we have a vector field V and
we ask what the “physical change” in V is along the ∂′α direction, it is
V(B)−V(A)transported ≈ ∆ξα

(
∂′αV

′β
)
∂′β. Let us define that to be ∆ξα times

the covariant derivative Dα′ in the ∆ξα direction. With ∆xµ the corre-

1Some awkward notation here: the coordinates of C′ will be called ξα without a prime,
but the derivative will be ∂′

α
= ∂/∂ξα. The indices µ, ν, ρ, σ will refer to the coordinates

xµ of the chart C, while indices α, β will refer to the chart C′.
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sponding change in chart C’s coordinates, we have

∆xµDµV = ∆ξα
(
∂′αV

′β
)
∂′β

= ∆xµ ∂ξ
α

∂xµ
∂′α

(

V ν ∂ξ
β

∂xν

)
∂xρ

∂ξβ
∂ρ

or DµV = ∂µ

(

V ν ∂ξ
β

∂xν

)
∂xρ

∂ξβ
∂ρ

=







∂µV

ρ +
∂2ξβ

∂xµ∂xν

∂xρ

∂ξβ

︸ ︷︷ ︸

Γρ
νµ

V ν







∂ρ

Thus the components of the vector DµV = (Dµv)
ρ ∂ρ are

(DµV )ρ = ∂µV
ρ + Γρ

νµV
ν .

Again, Dµ is known as the covariant dervivative.
The chart C was an arbitrary chart. In some other chart with coordinates

x′µ, would we have (DµV)ρ behave like a suitable tensor, with one covariant
and one contravariant index? That is, is

(
D′

µV
)ρ′ ?

=
∂x′ ρ

∂xσ

∂xν

∂x′ µ
(DνV)σ

The left hand side is

(Dµ′V)ρ′ = ∂′µV
′ ρ + Γ′ ρ

µκV
′κ

=
∂xν

∂x′ µ
∂ν

(
∂x′ ρ

∂xσ
V σ

)

︸ ︷︷ ︸

∂xν

∂x′ µ
∂x′ ρ

∂xσ ∂νV σ+( ∂
∂x′ µ

∂x′ ρ

∂xλ )V λ

+Γ′ ρ
µκ

∂x′ κ

∂xλ
V λ

The right hand side is

∂x′ ρ

∂xσ

∂xν

∂x′ µ
(
∂νV

σ + Γσ
νλV

λ
)
.

We find covariance if it is true that

Γ′ ρ
µκ

∂x′ κ

∂xλ

?
=
∂x′ ρ

∂xσ

∂xν

∂x′ µ
Γσ

νλ − ∂

∂x′ µ
∂x′ ρ

∂xλ
.
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or

Γ′ ρ
µκ

?
=
∂x′ ρ

∂xσ

∂xν

∂x′ µ
∂xλ

∂x′ κ
Γσ

νλ − ∂xλ

∂x′ κ
∂

∂x′ µ
∂x′ ρ

∂xλ
.

Note
∂

∂x′ µ

(
∂xλ

∂x′ κ
∂x′ ρ

∂xλ

)

=
∂

∂x′ µ
δρ
κ = 0

=
∂2xλ

∂x′ µ∂x′ κ
∂x′ ρ

∂xλ
+
∂xλ

∂x′ ρ
∂

∂x′ µ
∂x′ ρ

∂xλ

The second term matches our above questionable identity, which becomes

Γ′ ρ
µκ

?
=
∂x′ ρ

∂xσ

∂xν

∂x′ µ
∂xλ

∂x′ κ
Γσ

νλ +
∂x′ κ

∂xλ

∂2xλ

∂x′ µ∂x′ κ
.

But this is true, as verified from

Γλ
µν =

∂xλ

∂ξα

∂2ξα

∂xµ∂xν

which is Eq. 1 from Lecture P.
We have gone to great lengths to define the covariant derivative of a

vector, which is nontrivial because the basis vectors may change from point
to point. There were no such difficulties for a scalar, as the scalar did not
require basis vectors. Thus Dµf = ∂µf . For forms we must again worry
about a basis, but we can take a shortcut if we use Leibniz product rule,
Dµ(AB) = Dµ(A)B + ADµ(B) which must hold for any derivative (and in
particular it holds for ∂/∂ξα). Let A = Aµdx

µ be a 1-form which we wish
to covariantly differentiate. With V and arbitrary vector,

Dµ〈A||V〉 = ∂µ〈A||V〉 = 〈DµA||V〉 + 〈A||DµV〉
= ∂µ (AνV

ν) = = (DµA)ν V
ν + Aρ

(
∂µV

ρ + Γρ
νµV

ν
)
.

Thus
(DµA)ν = ∂µAν − Γρ

νµAρ.

The rules for an arbitrary tensor can be found by considering tensor
products of vectors and 1-forms. We find

(DµT )ν1...νr

ρ1...ρs
= ∂µT

ν1...νr

ρ1...ρs
+

r∑

i=1

Γνi
αµT

ν1...νi−1ανi+1...νr

ρ1...ρs

−
s∑

i=1

Γα
ρiµ
T ν1...νr

ρ1...ρi−1αρi+1...ρs
.



464/511 Lecture Q Last Latexed: December 8, 2016 at 11:17 4

The relationship between forms and vectors we just preserved in our defi-
nition of D on a form has nothing to do with the metric. But another connec-
tion we would like to have is that parallel transport of a pair of vectors should
not change their inner product g(u,v). Thus ∂µg(u,v) = Dµg(u,v) = 0 if
Dµu = 0 and Dµv = 0. But

Dµg(u,v) = (Dµg) (u, v) + g (Dµu, v) + g (u,Dµv) ,

and the last two terms are zero, so we must have

Dµg = 0.

To check this, evaluate

(Dµg)ρσ = gρσ,µ − Γλ
ρµgλσ − Γλ

σµgλρ

by our general relation for a tensor, so

(Dµg)ρσ = gρσ,µ − Γσρµ − Γρσµ = 0,

which is true (see Lecture P p. 7), so all is well.
Note: As Dg = 0, D commutes with raising and lowering indices! That

is important, e.g.

gµν
(

Dρ A
︸︷︷︸

1−form

)

ν
=

(

Dρ A
︸︷︷︸

vector

)µ

.

Our definition of covariant derivative assumed the vector or scalar or 1-
form was a field defined in the neighborhood of the event. Sometimes there
are quantities only defined on, for example, a path. The velocity of a particle
as it moves along its world-line is an example. u is simply not defined except
along the path, and neither is, say, the spin of the particle S. But we can
define a covariant derivative along the path as it would be were S defined
everywhere

(
D

Dλ
S

)ν

= “

(
dxµ

dλ
DµS

)ν

” = “
dxµ

dλ

(
∂Sν

∂xµ
+ Γν

ρµS
ρ

)

” =
dSν

dλ
+Γν

ρµS
ρdx

µ

dλ
.

The last expression is well-defned entirely along the path of the particle, even
though the expressions in quotes are not.
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Recall from the end of Lecture D that ~∇f ∼ df without requiring any
knowledge of g. Similarly ~∇ × ~A ∼ dA doesn’t depend on g or Γ. But
~∇ · ~A = ∗d ∗ A, and the ∗ requires the use of2 εµνρσ =

√
g ǫµνρσ, where it is

ǫµνρσ, not εµνρσ, which is a constant (±1 or 0). Thus if A = Aµdx
µ,

∗ A =
1

3!
Aµ√g ǫµρσκ dxρ ∧ dxσ ∧ dxκ

d ∗ A =
1

3!
∂ν (Aµ√g) ǫµρσκ dxν ∧ dxρ ∧ dxσ ∧ dxκ

and ∗ d ∗ A =
1

3!
∂ν (Aµ√g) g−1/2 ǫνρσκ ǫµρσκ = g−1/2∂µ (Aµ√g)

That is perhaps not what you expected (∂µA
µ ?). But it is the covariant

derivative of the vector A, contracted to form a divergence,

DµA
µ = ∂µA

µ + Γµ
νµA

ν ,

as Γµ
νµ =

1

2
gµρ (gνρ,µ + gµρ,ν − gνµ,ρ) =

1

2
gµρgµρ,ν =

1

2
TrG−1∂νG

=
1

2
Tr ∂ν ln G =

1

2
∂ν ln detG = ∂ν ln

(
g1/2

)
= g−1/2∂ν g

1/2

(where the matrix G = g··) .

Thus DµA
µ = g−1/2∂µ (Aµ√g) .

If we used Dµ for the divergence, why not for the curl? We did, but it
made no difference,

~∇× ~A ∼ DµAν −DνAµ = ∂µAν − ∂νAµ −



Γρ
νµ − Γρ

µν
︸ ︷︷ ︸

0



Aρ,

so the Γ dependence falls out of the antisymmetric part of the covariant
derivative of a 1-form. Define the tensor product of two 1-forms and therein
lies (if A is a 1-form)

dxµ ⊗DµA = dxµ ⊗ dxν
(
∂µAν − Γρ

νµAρ

)
.

2Recall from Lecture E that we defined ǫµνρσ to be the totally antisymmetric set of
constants with ǫ0123 = 1, but this was not covariant, and we also defined εµνρσ =

√
g ǫµνρσ

which is covariant.
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The antisymmetric part is just dA, but the symmetric part is dependent on
the connection coefficients. Similarly3 dF ∼ D[µFνρ], and the Γ drops out.

Generalization to internal vector spaces:

Let us suppose we have a physical system involving a field ψ which takes
values in an internal vector space, so that in some particular basis we have
ψa, a = 1, · · · , N . Let us also suppose that the physics is invariant under a
group of transformations generated by La

b of the basis, or under

ψ′ a =
(
e−iθL

)a

b
ψb (1)

made independently at each spacetime point. Then if any derivatives are
to enter the theory at all, there must be some additional structure. Let us
assume a kind of equivalence principle: at any one point P of spacetime it is
possible to find a set of bases ea(x) of the internal vector space such that, at
P, the physics is described by a Lagrangian L(ψ, ∂µψ) with no other fields
(analogous to the laws of special relativity with no gravitational fields). Then
in any other basis, the Lagrangian must be described by

L(ψ′, D′

µψ
′)

where the relationship between the bases (1) also holds for

D′

µψ
′ =

(
(e−iθL

)a

b
∂µψ

b =
(
e−iθL

)a

b
∂µ

(
eiθLψ′

)b

= ∂µψ
′ a +

(
e−iθL

)a

b
∂µ

(
eiθL

)b

c
ψ′ c,

or Dµ = 1I ∂µ + e−iθL∂µe
iθL is a matrix acting on the vector space of the ψ’s.

Define
Aa

c µ = e−iθL ∂µ e
iθL = Aµ.

Note that although eiθL connects two bases at the same point, the one for
which the “inertial” frame has no A, and the other an arbitrary, general
basis, the A refers only to the general basis, but in a sense at neighboring
points. It defines parallel transport in the vector space of the ψ’s.

3More neglected notation: a term with a bunch of lower indices enclosed in square brack-
ets means to antisymmetrize in those indices, so D[µFνρ] := 1

3 (DµFνρ − DνFµρ − DρFνµ)
(where I already made use of the antisymmetry of Fµν). Enclosing in curly brackets means
symmetrize (F{µ,ν} = 0), and the same applies to a bunch of contravariant indices.


