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Physics 464/511 Lecture P Fall, 2016

1 Equivalence Principle

I am anxious to get into general relativity. We will follow the motivation
of Einstein, who was clearly led to his conception of general relativity by
analogy with his success in special relativity. Let us examine the beginning
of his first paper on relativity:

On the Electrodynamics of Moving Bodies
by A. Einstein

It is known that Maxwell’s electrodynamics—as usually under-
stood at the present time—when applied to moving bodies, leads to
asymmetries which do not appear to be inherent in the phenomena.
Take, for example, the reciprocal electrodynamic action of a magnet
and a conductor. The observable phenomenon here depends only on
the relative motion of the conductor and the magnet, whereas the
customary view draws a sharp distinction between the two cases in
which either the one or the other of these bodies is in motion. For if
the magnet is in motion and the con- ductor at rest, there arises in the
neighbourhood of the magnet an electric field with a certain definite
energy, producing a current at the places where parts of the conduc-
tor are situated. But if the magnet is stationary and the conductor
in motion, no electric field arises in the neighbourhood of the magnet.
In the conductor, however, we find an electromotive force, to which in
itself there is no corresponding energy, but which gives rise—assuming
equality of relative motion in the two cases discussed—to electric cur-
rents of the same path and intensity as those produced by the electric
forces in the former case.

Examples of this sort, together with the unsuccessful attempts
to discover any motion of the earth relatively to the “light medium,”
suggest that the phenomena of electrodynamics as well as of mechanics
possess no properties corresponding to the idea of absolute rest.

Now in special relativity we restrict our attention to inertial frames. But
in 1911 Einstein realized that the same multiple explanation situation ap-
plied to considering the physics for a person in a big box, considering the
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motion of objects in the box, whether the box was sitting on the surface of
a big planet or out in gravity-free space but being accelerated. Consider the
mechanics of a physicist O′ in a closed room, which is accelerating at a con-
stant acceleration a, and is therefore not an inertial frame. From the special
relativity approach we situate ourselves, named O, in an inertial frame with
respect to which he (O′) has velocity v at a given instant. If we restrict our-
selves to an interval over which v is small, we find every object in his room

obeys ~Fi = m
d2~xi

dt2
= m~ai. Using his coordinates we find ~a ′

i = ~ai − ~a, so

m~a ′

i = “~F ′

i
′′ = m~ai − m~a = ~Fi − m~a.

If the observer in the box tries to use Newton’s laws, he looks for the physical
origin of the force ~F ′

i. But the objects which are interacting with the observed

object generate only the force ~Fi, and he must postulate a pseudoforce −m~a
due to no definable other object. If he wishes to conclude that he must
be accelerating, he must exclude the possibility that this force is due to
some other object from outside. Perhaps he reasons: all other forces depend
on positions, charges, and other variables of the material. But this excess
force is always proportional to the mass, exactly as it would be if I were
accelerating. Therefore I conclude that there are no outside influences, but
I am accelerating with respect to an inertial frame.

But would he not observe exactly the same physics within his box if it was
simply sitting on the surface of a large planet? Each object within the box
would experience an extra force mg downwards, so that the situation would
be indestinguishable from a box accelerating with a = g in the opposite
direction.

Now you should argue that the way real forces are distinguished from
pseudoforces is that they depend on some property of the object, such as
charge, rather than being proportional to the inertial mass. Perhaps the
gravitational mass in W = mgg is not exactly the same as the inertial mass
mI . Any relativity book will tell you of the ingeneous experiments which
attempt to find a variation in mg/mI = 1 + δ and show that |δ| < 10−12. So
the masses appear to be equal. This equality is so accurately known that it
rules out possibilities like leaving out from mg

• the binding energy of an atom, ≈ 10−8 in hydrogen

• the Lamb shift energy, 4 × 10−12 in hydrogen, more in other atoms.
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So once again we have a situation with two different explanations of the
same observations depending on coordinate system. Once again Einstein
raised the equivalence under certain conditions to a fundamental postulate,
called the principle of equivalence.

Before we get too carried away, we must examine more carefully what
this equivalence is. In the box on the surface of the Earth, the objects do not
really all accelerate the same, because different points are different distances
away from the center of the Earth, and the accelerations are all pointing
towards the center of the Earth, and are therefore not exactly parallel to
each other. If the coordinates are xi, we will find

d2xi

dτ 2
= ai(xj) = ai(0) + xj ∂ja

i
∣
∣
0
+ . . .

where 0 is within the box, and we will think of the box’s extent (range of ~x)
as small compared to the variation scale of a (that is, x ≪ a/∂ja). The
ai(0) term is the same for all particles in the box, and can be considered
a pseudoforce due to acceleration of the box. But the second term, which
gives the variation of the accelerations, is a detectable effect, driving objects
towards the floor and roof and in from the sides of a satellite in free fall.
These are called tidal forces. So we cannot say that all gravitational forces
are pseudoforces, but only that the gravitational force at any particular point
may be considered a pseudoforce.

In the absence of gravity, the equations of motion are given by the laws of
special relativity, together with whatever the relevant mechanics of the mat-
ter is. By the equivalence principle, if we can set up a coordinate system in
which there are no gravitational forces, then physics obeys special relativistic
laws in that coordinate system. In other coordinate systems, we must expect
physics to be weird.

We all know that if you try to describe mechanics from an accelerating
frame there are strange forces. For example, in a rotating system there are
centrifugal and Coriolus forces. But there is worse.

Consider1 a rotating table, and let observers moving with the table at-

1Reference: Feynman, Lectures in Physics II, chapter 42.
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tempt to draw a triangle. They draw
straight lines from A to B, etc.. What
does straight line mean? The shortest dis-
tance between two points. So they draw
two paths as shown. The dashed line looks
straight to us, but when the residents of
the turntable go to compare the lengths,
they find it is longer than the one we con-
sider curved. Why? According to us, not
rotating, their metersticks shrink increas-
ingly as they go away from the center, es-
pecially when held tangentially, so they are

A

B

C

measuring the dashed line with shrunken metersticks, and more of them
fit along that line than along the one that appears curved to us. If they
do the same between B and C, and between C and A, and measure the
angles, they will find the sum of the angles of their triangle is less2 than
180◦! Actually more convincing, the bugs measure the same radius R
that we do, but their measurement of the circumference, which we claim is
2πR, with their metersticks shrunking to 1/γ meters, is 2πγR > 2πR, where
γ = 1/

√

1 − v2/c2 with v the velocity of the rim. Geometry is not Euclidian
or Minkowskian when observed in an accelerating coordinate system.

Let us return to our box which may be accelerating through empty space
or may be sitting on the surface of a large planet, with no way for us to
tell which. A photon comes through a one-way window and crosses the box.
If we are an accelerating spaceship, an inertial observer looking in sees the
photon moving in a straight line, as would any other free particle, while our
box accelerates upwards with acceleration g. Therefore to an observer with
coordinates fixed in the box, the photon falls with the same acceleration
g as all other particles. This requires that light is bent in a gravitational
field, so that, for example, star light passing the sun should be bent inwards,
and stars observed on opposite sides of the sun during a solar eclipse should
appear to be further apart than usual. We may return to this later, as if we
did the calculation now we would get the wrong answer by a factor of two.

Another conclusion we may reach is even more startling, though not quite
so simple. Suppose we have two clocks, one at the top of the spaceship-box

2Actually, this is not clear, because what looks like less than 60◦ to us will look bigger

to them, as the meterstick used to measure the separation will shrink.
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and one at the bottom, a distance h apart. Let us observe with an inertial
observer O, at a time when the velocity of the ship is small. If the bottom
clock emits a flash of light when v = 0, it will not be received by the top
clock until time h/c = h, at which time the clock will be moving away from
the source at v = ah. The light will therefore be red-shifted by

ftop = fbottom

√

1 − ah

1 + ah
≈ fbottom (1 − ah) .

Similarly if the clock on top emits a flash when v = 0, the bottom one
will receive it at time h, at which time it is moving towards the source at
velocity ah, and the light is blue-shifted

fbottom = ftop

√

1 + ah

1 − ah
≈ ftop (1 + ah) .

This agrees with the previous equation, and both observers agree that the
frequency of ticks of the bottom clock is lower than that of the top, or the
higher clock is running faster!

Now suppose our box is not a spaceship but the Em-
pire State Building. Einstein says physics is the same,
and the executives at the top are ageing faster than the
receptionist on the first floor, at a rate 1+gh = 1+gh/c2

faster, which makes them about 1 µs older for each year
they worked. Although this effect is probably not the
correct explanation of their gray hair, it does lead us to
an interesting conclusion: spacetime as measured on a
planet’s surface is not Minkowskian!. If the receptionist
emits light rays one second apart, each travels up the
Minkowski diagram at 45◦, forming a parallelogram, but
TE > TR.

t

h

E

T
R

T

This was presaged by our discussion of the turntable: accelerated ob-
servers do not see Minkowskian geometry. Any hope for Minkowskian ge-
ometry can only be for an inertial observer who feels no gravity. Given any
particular event we can always find such an observer by letting him free-fall,
but in his coordinate system gravity vanishes only in the neighborhood of the
chosen event. There is no way to set up a global coordinate system which
in inertial, so there is no way to treat the global geometry as Minkowskian.
We are going to have to learn how to talk about curved spacetime.



464/511 Lecture P Last Latexed: December 8, 2016 at 11:16 6

We have seen that the spacetime in which physics acts is a curved space
which can be considered flat (Minkowskian) in a small neighborhood at each
point but cannot be considered flat globally3. In each region, I can find a
coordinate system xµ which is in 1−1 correspondence with the spacetime in
that region. Such a 1−1 map from a region of spacetime to an open subset
of R

4 is called a chart. There is not necessarily a single chart which can
cover the whole spacetime. We discussed setting up charts for a manifold in
Lectures D and E, where we considered differentiation in terms of n-forms,
learned how to integrate those and how they corresponded to certain vectors
and tensors in flat space, but we also considered Riemannian manifolds with
a nonconstant metric gµν and geodesics on such manifolds.

2 Vierbeins, Connections

[Ref: Weinberg Gravitation and Cosmology Part 2 Chapter 3]
Physics is described locally by fields, forms, and the metric tensor. At

any point, the principle of equivalence tells us it is possible to choose a
Minkowskian coordinate system with g = η, with no gravitational forces at
that point. Let us set up a chart with coordinates ξα near the point P which
is Minkowskian in the following sense:

• A free object at P has no acceleration in terms of the ξ coordinates,
d2ξα/dτ 2 = 0

• g = dξα ⊗ dξβηαβ at P.

[Note: the coordinates ξα are specially chosen to match the point P, and
more properly should be called ξα

P
.] Einstein assures us that we can write

down physics locally, at P , in the coordinate system ξ, and it is the same
as it would be were their no gravity.

The coordinates ξα
P
(P ′) of the point P ′ have no decent properties except

for P ′ at or near P. In fact, we could have chosen a new chart ξα
P ′ centered at

P ′ to have things look Minkowskian there. Let us simultaneously use another
chart C = {xµ}. Then

dξα = V α
µdxµ, where V α

µ(P) =
∂ξα

∂xµ

∣
∣
∣
∣
P

.

3Refs: more formal— Chapter 2 of Hawking and Ellis, Large Scale Structure of Space-

Time. Less formal— Misner Thorne and Wheeler Gravitation, chapter 2.
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The object V α
µ(P) is called the Vierbein.

The components of g(P) in C are

g = gµνdxµ ⊗ dxν = ηαβdξα ⊗ dξβ = ηαβV α
µV

β
νdxµ ⊗ dxν

so gµν = ηαβV α
µV β

ν .

The vierbein therefore determines the metric tensor.
What is the equation of motion? If there are no non-gravitational forces,

d

dτ

dξα

dτ
= 0 =

d

dτ

(

V α
µ

dxµ

dτ

)

= V α
µ,ν

dxν

dτ

dxµ

dτ
+ V α

µ

d2xµ

dτ 2
= 0

V is the Jacobian of a nonsingular change of variables4. Its inverse is there-
fore

(
V −1

)µ

α
=

∂xµ

∂ξα
, as

(
V −1

)µ

α
V α

ν =
∂xµ

∂ξα
·
∂ξα

∂xν
= δµ

ν .

Thus
d2xρ

dτ 2
+

(
V −1

)ρ

α
V α

µ,ν
︸ ︷︷ ︸

Γ
ρ

µν

dxν

dτ

dxµ

dτ
= 0

where we have defined the affine connection

Γρ
µν :=

(
V −1

)ρ

α
V α

µ,ν =
∂xρ

∂ξα

∂2ξα

∂xµ∂xν
(1)

Thus we have the equation of motion

d2xρ

dτ 2
+ Γρ

µν

dxν

dτ

dxµ

dτ
= 0 (2)

This is also known as the geodesic equation, not only in general relativity
but also on a Riemannian manifold. We saw this earlier in Lecture D.

Let us examine the relation of the affine connection to the metric. Note
that as Γρ

µν :=
(
V −1

)ρ

α
V α

µ,ν , V α
µ,ν = V α

ρΓ
ρ
µν , so

gµν,ρ =
∂

∂xρ

(

V α
µV

β
νηαβ

)

=
(

V α
µ,ρV

β
ν + V α

µV
β
ν,ρ

)

ηαβ

=
(

Γσ
µρV

α
σV β

ν + Γσ
νρV

α
µV

β
σ

)

ηαβ = Γσ
µρgσν + Γσ

νρgσµ

4Notation I should have introduced earlier: a subscript {},µ means derivative of what-

ever is {} with respect to xµ, so V α
µ,ν :=

∂V α

µ

∂xν .
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Note we have assumed ηαβ,ρ = 0 ! So ξ is more than just an orthonormal set
of coordinates at P, it is also one with no acceleration without forces.

The vierbein is not a tensor, because it refers to two different charts. Γ
has only indices which refer to the chart C, but nonetheless it is not a tensor.
We shall see later how it changes under chart change. Nonetheless, let us
raise and lower its indices with g, so

gµν,ρ = Γνµρ + Γµνρ, but also Γσµν = Γσνµ.

Add the same with µ ↔ ρ and subtract ν ↔ ρ,

gρν,µ = Γνρµ + Γρνµ = Γνµρ + Γρνµ

−gµρ,ν = −Γρµν − Γµρν = −Γρνµ − Γµνρ

so, adding and dividing by two,

1

2
(gµν,ρ + gρν,µ − gµρ,ν) = Γνµρ

and Γσ
µρ = gσν Γνµρ =

1

2
gσν (gµν,ρ + gρν,µ − gµρ,ν).

Having derived the equation which determines how otherwise free parti-
cles move in a gravitational field, let us compare with Newton’s laws for a
test particle in the field of a single heavy body moving non-relativistically.
We must limit our attention to slow particles and weak gravitational fields,
for otherwise Newton can’t be right. Furthermore, it should be possible to
choose our coordinates so that gµν = ηµν + hµν where hµν ≪ 1, so Γ ≪ 1.
Then to first order in h, Γ and v, t = τ , uµ = (1, ~v), and the geodesic equation

and ~F = m~a = −~∇φ give

d2xj

dt2
= −Γj

00
= −∂jφ,

where φ is Newton’s gravitional potential φ = −GM/r. Assume gµν is inde-
pendent of time. Then

Γj
00

≈
1

2
(gj0,0 + g0j,0 − g00,j) = −

1

2
g00,j

so g00 = 1 − 2φ. This is the Newtonian approximation.
Consider now a stationary metric, gµν(~x) independent of t, not necessarily

weak. Consider two clocks at rest in this field. Each clock is guaranteed
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by the manufacturer to tick once each second of proper time regardless of
acceleration (no grandfather clocks allowed). In terms of our coordinate
system

(∆τ)2 = −gµν∆xµ ∆xν = −g00(~x) (∆t)2

so the coordinate interval between ticks is

(∆t)A = [−g00(xA)]−1/2 , (∆t)B = [−g00(xB)]−1/2 .

If A sends light signals to B each time his clock ticks, the time differences
treceived − temitted will be the same for each pulse, so B can measure on his own
clock the period between ticks of A’s clock. The answer is

T ′ =
∆tA
∆tB

=

[
g00(xB)

g00(xA)

]1/2

and the frequency of the light emitted is therefore shifted by

f ′ = f

[
g00(xA)

g00(xB)

]1/2

.

We have derived this for an arbitrary stationary metric. In the Newtonian
limit

f ′

f
=

[
1 + 2φA

1 + 2φB

] 1

2

≈ 1 + (φA − φB) = 1 + GM

[
1

rB
−

1

rA

]

.

At the surface of the Sun φ = −2.12 × 10−6, so for an observer at ∞, the
Sun’s light is red shifted by

∆f/f = +φsurface = −2.12 × 10−6.

Note that f ′/f = 1+φA−φB agrees with our calculation based on equivalence
to a rocket ship.

This gravitational red shift is best tested by dropping photons down a
shaft at Harvard. General relativity has been tested thereby to an accuracy
of about 1%.


