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Physics 464 Lecture M Fall, 2016

1 Integral Transforms

An integral transform is a linear map f → g from a space of functions into
another given by

g(α) =

∫ b

a

f(t)K(α, t)dt

where K is a fixed function called the kernel, and a and b are fixed. We
write this map L : f → g or g = Lf , or less correctly but more transparently,

g(α) = Lf(t).

L is obviously linear. If the map is invertible, we call its inverse L−1. The
question of which spaces of functions are to be considered for f and g can
lead to murky mathematics, which we abhor.

Useful transforms:

K(α, t) (a, b) Name
1√
2π

eiαt (−∞,∞) Fourier

e−αt (0,∞) Laplace
tJn(αt) (0,∞) Hankel

tα−1 (0,∞) Mellon

We will cover the fourier integral in terms of a limit of the fourier series.
If a function f(x) is periodic on [−L, L], we may change the interval with

u = πx/L, and fourier transform the function F (u) := f(x). Then F is
periodic on [−π, π] so

F (u) =

∞∑

n=−∞

aneinu, an =
1

2π

∫ π

−π

F (u)e−inu du

or f(x) =

∞∑

n=−∞

ane
inπx/L, an =

1

2L

∫ L

−L

f(t)e−inπt/L dt

and f(x) =
∞∑

n=−∞

ane
inπx/L =

∫ L

−L

f(t)
∞∑

n=−∞

einπ(x−t)/L dt

2L
.
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Let ω = nπ/L. Then summing on n means summing on ω’s with a
spacing ∆ω = π/L,

f(x) =

∫ L

−L

f(t)

{

1

2π

∑

ω

eiω(x−t)∆ω

}

dt

We see that the { } acts like a δ(x − t) on the interval [−L, L]. As L → ∞,
the sum becomes an integral,

f(x) =

∫ ∞

−∞

f(t)

{
1

2π

∫ ∞

−∞

dωeiω(x−t)

}

dt

so δ(x − t) =
1

2π

∫ ∞

−∞

dωeiω(x−t).

For any finite L, the function

g(ω) = L

√

2

π
an for ω = nπ/L

=
1√
2π

∫ L

−L

f(t) e−iωt dt

is defined only at a finite set of points, but as L → ∞,

g(ω) =
1√
2π

∫ ∞

−∞

f(t) e−iωt dt (1)

is defined for all ω. The inverse is given by the expansion of f ,

f(x) =
∑

aneinπx/L =
∑

ω

√
π

2

1

L
g(ω) eiωx =

1√
2π

∑

ω

∆ω g(ω) eiωx

→ 1√
2π

∫ ∞

−∞

dω g(ω) eiωx (2)

(1) is called the fourier transform and (2) the inverse fourier transform.
The sign in the exponentials are reversed from Arfken — this is a question
of convention, as long as the sign of (1) is the opposite of that for (2).

It is conventional to call ω the variable for the fourier transform of a
function of time t, and name it the angular frequency, and use k for the
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variable for the transform of a function of position x, and call it the wave-
number. Then the conventional choices of signs for the exponents are

g(k, ω) =
1

2π

∫

dx dt f(x, t)e−ikx+iωt

with different choices of sign for x and t, to account for the relativistic dot
product kµx

µ = ~k · ~x − ωt.
The nice thing about fourier transforms is that derivatives become simple.

If h(x) is the fourier transform of df/dx,

where f(x) =
1√
2π

∫

dk eikxg(k)

then h(x) =
df

dx
=

1√
2π

∫

dk {ikg(k)} eikx

so h(k) = ikg(k)

Thus derivatives with respect to x turn into multiplication by ik. On the
other hand multiplication of functions of x become difficult, turning into a
convolution

L
(
f(x)h(x)

)
=

1√
2π

∫

dx e−ikx f(x) h(x)

=
1√
2π

∫

dx e−ikx

∫
dq√
2π

eiqx (Lf) (q)

∫
dp√
2π

eipx (Lh) (p)

=
1√
2π

∫

dq dp δ(k − p − q)
[
(Lf) (q)

]
·
[
(Lh) (p)

]

=
1√
2π

∫

dq
[
(Lf) (q)

]
·
[
(Lh) (k − q)

]
.

This combination of Lf and Lh is called the convolution, and written
Lf ∗ Lh, so we have shown

L(fh) = Lf ∗ Lh.

Parseval was a medieval knight1 who went in search of the holy grail, at

1Just kidding. That was Parsival or Perceval or Parzival.
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least according to Arthurian legends. What he found was

∫ ∞

−∞

dk (Lf(k)) [Lg(k)]∗

=

∫ ∞

−∞

dk

∫
dy√
2π

e−iky f(y)

[∫
dx√
2π

e−ikx g(x)

]∗

=

∫

dx dy f(y) g∗(x)

∫
dk

2π
eik(x−y)

︸ ︷︷ ︸

δ(x−y)

=

∫

dx f(x) g∗(x),

so, with norm given by an integral with weight w = 1 for both the function
space and the “dual” space of the fourier transform,

(g, f) = (Lg,Lf) .

I do not have time to discuss Laplace and Mellin transforms. Laplace
transforms are used extensively in analysis of circuits.

Consider a general integral transform

f(x) =

∫ b

a

K(x, t) φ(t) dt.

Then there is the problem of inverting, i.e. given f , to find φ. Considered
thusly this is called a Fredholm equation. This form is called the first kind,
while

φ(x) = f(x) + λ

∫ b

a

K(x, t) φ(t)dt

is called a Fredholm equation of the second kind.
Formally solving these equations is like solving a linear equation, but the

coefficients are operators.

1.1 Green’s Functions

Let L be a self-adjoint differential operator of second order, L =
d

dx
p(x)

d

dx
+

q(x), and suppose that we wish to solve the equation L y(x) + f(x) = 0 for
some known source function f(x).
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Let us assume that the solution y is given by

y(x) =

∫

G(x, t)f(t) dt

for some kernel G independent of y and f . This is reasonable because of the
linear nature of y’s dependence on f .

Applying L,

Ly =

∫

LxG(x, t) f(t) dt = −f(x),

so LxG(x, t) = −δ(x − t).

Thus G(x, t) is a solution of the homogeneous equation LxG(x, t) = 0, except
at the point x = t. Then

∫ t+∆x/2

t−∆x/2

LxG(x, t) dx = −
∫ t+∆x/2

t−∆x/2

δ(x − t) dx = −1

= p(x)
d

dx
G(x, t)

∣
∣
∣
∣

t+∆x/2

t−∆x/2

+

∫ t+∆x/2

t−∆x/2

q(x) G(x, t) dx.

If we assume G is bounded, the second term vanishes as ∆x → 0 and we get
a discontinuity in dG/dx,

p(t)
∂G

∂x

∣
∣
∣
∣
x=t+ǫ

= p(t)
∂G

∂x

∣
∣
∣
∣
x=t−ǫ

− 1.

We will impose the condition that G itself be continuous.
Suppose we expect our solution y to obey some homogeneous boundary

condition at a and b, such as y(a) = 0. Then the solution y(x) will satisfy
this condition if G(x, t) does, e.g. G(a, t) = 0. Let u(x) be the solution
of Lu = 0 on [a, t] and v(x) the solution on [t, b], satisfying the specified
boundary conditions.2 Each is arbitrary up to a multiplicative constant. So

G(x, t) =

{
c1u(x) for x < t
c2v(x) for t < x

2Generically u and v cannot each satisfy both homogeneous conditions without van-
ishing, so u and v will not be the same function. This differs from the Sturm-Liouville
situation, where the equation had an adjustible parameter λ for discrete values of which
u(x) could satisfy both boundary conditions.
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satisfies our conditions if

c1u(t) − c2v(t) = 0

c1u
′(t) − c2v

′(t) = 1/p(t)

which has a solution for c1 and c2 if the Wronskian
∣
∣
∣
∣

u v
u′ v′

∣
∣
∣
∣
x=t

6= 0.

If we choose u and v fixed functions independent of the t we are dealing with,
the t dependence enters through c1(t) and c2(t). Then

d

dx

(

p(x)

∣
∣
∣
∣

u(x) v(x)
u′(x) v′(x)

∣
∣
∣
∣

)

=
d

dx

{

u(x)p(x)
dv

dx
− v(x)p(x)

du

dx

}

=
du

dx
p(x)

dv

dx
+ u(x)(−q(x))v(x) − dv

dx
p(x)

du

dx
− v(x)(−q(x))u(x) = 0,

because Lu = Lv = 0. So p(x) (u(x)v′(x) − v(x)u′(x)) = A, a constant, and

c1(t) = −v(t)

A
, c2(t) = −u(t)

A
clearly satisfy our equations. Thus

G(x, t) =







− 1

A
u(x)v(t) for x < t

−
1

A
u(t)v(x) for x > t

satisfies all our conditions. If we can find u and v we can find the Green’s
function G and then the solution to the inhomogeneous equation

L y(x) + f(x) = 0.

In Lecture I we considered the homogeneous self-adjoint second order
differential equation

d

dx
p(x)

dy(x)

dx
+ q(x)y(x) + λw(x)y(x) = 0,

on an interval [a, b] with suitable homogeneous boundary conditions, and
found there were nonzero solutions φn only for a discrete infinite set of eigen-
values λn, and that these eigenfunctions could be normalized such that they
were orthogonal with weight w(x), in the sense that

〈φr, φs〉 :=

∫ b

a

w(x)φ∗
r(x)φs(x)dx = δrs,
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and that they satisfied

∑

r

w(t)φ∗
r(t)φr(x) = δ(x − t).

Now consider adding a source term, looking for a solution to

d

dx
p(x)

dy(x)

dx
+ q(x)y(x) + λw(x)y(x) = f(x)

for a given function f . Again, we expect there to be a Green’s function, now
depending on the parameter λ as well as x and t, with

y(x) =

∫ b

a

Gλ(x, t)f(t)dt.

With the hermitean operator defined by L :=
d

dx
p(x)

d

dx
+ q(x), our eigen-

functions satisfy Lφn(x) = −λnw(x)φn(x) and the Green’s function satisfies
[Lx + λw(x)]Gλ(x, y) = −δ(x − y). We saw at the end of Lecture I that

Gλ(x, y) =
∑

n

φn(x)φ∗
n(y)

λ − λn

.

Green’s functions are very useful in partial differential equations, as long
as they are linear. Consider again

Lφ(~r ) + f(~r ) = 0

where now L is a partial differential operator on a function φ(~r ). We again
define the Green’s function by

Lr1
(G(~r1, ~r2)) = −δD(~r1 − ~r2)

plus some boundary conditions when ~r1 is on the surface of the region being
considered (perhaps |~r1| → ∞). Then

y(~r1) =

∫

dD~r2 G(~r1, ~r2)f(~r2)

satisfies Ly(~r1) =
∫

dD~r2 {Lr1
G(~r1, ~r2)} f(~r2) = −

∫
dD~r2 δD(~r1−~r2)f(~r2) =

−f(~r1).
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The most important cases are, of course the Laplacian L = ∇2 and
the Helmholtz L = ∇2 + k2. As the L operator is translation invariant,
G(~r1, ~r2) = G(~r1 −~a,~r2 −~a) which means it is a function only of ~r1 − ~r2. In
addition, L is rotation invariant, so it is a function only of |~r1 − ~r2|,

G(~r1, ~r2) = F (|~r1 − ~r2|).
To evaluate F , we can set ~r2 = 0.
We can consider the Laplacian Green’s function as the k = 0 special case

of Helmholtz. Consider a sphere |~r1| = R and ask what the integral over

that sphere of n̂ · ~∇G(~r1, 0) =
∫

d2ΩR2F ′(R) is, where F ′(R) = dF/dr|R. By
Gauss’s law, this

4πR2F ′(R) =

∫

V

~∇ · ~∇G(~r, 0) =

∫

V

(
Lr1

− k2
)
G(~r, 0)

= −1 − k2

∫

V

G(~r, 0) = −1 − 4πk2

∫ R

0

r2F (r) dr. (3)

Differentiating in R gives 2RF ′(R)+R2F ′′(R)+k2R2F (R) = 0, which is the
spherical Bessel equation with ℓ = 0, with solutions j0(kR) = sin(kR)/kR
and n0(kR) = − cos(kR)/kR. Thus rF (r) = Aeikr + Be−ikr, the left hand
side of (3) is 4π

[
ikR(AeikR − Be−ikR) − AeikR − Be−ikR

]
and the right hand

side is

−1 − 4πk2

∫ R

0

(Areikr + Bre−ikr) dr

= −1 + 4πA
[
(ikR − 1)eikR + 1

]
− 4πB

[
(ikR + 1)e−ikR − 1

]

which agrees as long as A + B =
1

4π
. If we choose B = 0, we have

G(~r1, ~r2) =
eik|~r1−~r2|

4π|~r1 − ~r2|
.

What do we make of the ambiguity? Adding B
4πr

(e−ikr−eikr) = B
2πir

sin(kr)
is adding a solution of the homogeneous equation L∆G = 0, so, as usual,
the solution of the inhomogeneous equation is ambiguous by addition of the
homogeneous one. Boundary conditions on the solution at infinity should
determine that ambiguity.

Returning to the Poisson equation with L just the laplacian, we have the
Green’s function

G(~r1, ~r2) =
1

4π

1

|~r1 − ~r2|
.
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In spaces other than three dimensional, we would still have, by transla-
tional invariance and rotational symmetry, G(r1, r2) = f(r), so on a hyper-

sphere of radius R about r2, ~∇G = f ′(R)êr, where ~r = ~r1 −~r2. Then Gauss’
law would tell us
∫

|r|=R

n̂ · ~∇G =

∫

|r|≤R

∇2G =

∫

|r|≤R

(
LG − k2G

)

=

∫

|r|≤R

(
−δD(~r) − k2f(|r|)

)
= −1 − SDk2

∫ R

0

rD−1f(r) dr

= SDRD−1f ′(R)

where SD =
∫

dΩD is the surface area of a unit ball in D dimensions, or the
D−1 sphere.

Differentiating with respect to R we find

rD−1f ′′ + (D−1)rD−2f ′ + k2rD−1f = 0,

Let’s again restrict ourselves to the Poisson equation with k = 0. Then we

have SDRD−1f ′(R) = −1, and G(~r1,~0) = −1
SD

∫ |r1|

0
r1−Ddr = 1

(D−2) SD
|r1|2−D.

or

G(~r1, ~r2) =
1

(D−2) SD |~r1 − ~r2|D−2
.

You know S2 = 2π and S3 = 4π. As is shown in the supplementary notes3

SD = 2 πD/2

Γ(D/2)
, thus we have

G(~r1 − ~r2) =
Γ(D/2)

(D−2)

1

2πD/2|~r1 − ~r2|D−2
=

Γ(D−2
2

)

4πD/2|~r1 − ~r2|D−2
(4)

In particular, for D = 3, we get f = Γ(1/2)/4π3/2|r| = 1/4πr, which we
could also get with

A = 4πR2, f ′ = − 1

4πR2
, f =

1

4πR

in agreement with Coulomb’s law.

For D = 2, A = 2πR, f ′ = − 1

2πR
, f = − 1

2π
ln R.

3“Γ(N/2) and the Volume of SD−1”.
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Trying to evaluate f with Eq. (4) is tricky, as it seems G goes to an
infinite constant as D → 2. Of course a solution to ∇2φ = −ρ has an
undetermined constant in ρ(~r), so a constant in G(~r) is ignorable. Expanding
r2−D = exp{(2−D) ln r} = 1 + (2−D) ln r + O(D−2)2 and dropping the 1,
L’Hôpital’s rule gives

G(~r1, ~r2) = lim
D→2

1

4πD/2
Γ

(
D−2

2

)

(2−D) ln r = − 1

2π
ln r.

Note that in two dimensions the potential blows up at infinity. Thus
Coulomb forces are confining in ≤ 2 dimensions.


