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Physics 464/511 Lecture K Fall, 2016

1 Some particular important functions

The Γ function

We have already seen that the Γ function

Γ(z) =

∫ ∞

0

e−uuz−1du Re x > 0

is an extension of (z − 1)! to the complex rhp (right half plane).
We have seen Γ(z + 1) = zΓ(z), which allows continuation to the whole

plane except for simple poles at the negative integers and zero. We have also
claimed

Γ(z)Γ(1 − z) =
π

sin πz
,

using the beta function B(z, 1−z), which we will show is indeed Γ(z)Γ(1−z),
shortly.

Special values: Γ(n+ 1) = n! for nonnegative integers n, Γ(1
2
) =

√
π.

Here are two proofs of the last:

1)

∫ ∞

0

e−uu−1/2du =
v=

√
u

2

∫ ∞

0

e−v2

dv =

∫ ∞

−∞
e−v2

dv =
√
π

2) Γ(
1

2
)Γ(

1

2
) =

π

sin π/2
= π.

I once assigned for homework proving the infinite product formula

1

Γ(z)
= zeγz

∞∏

n=1

(

1 +
z

n

)

e−z/n,

where γ = limn→∞
(
− lnn+

∑n
1

1
k

)
is the EulerMascheroni constant. This

would be straightforward if you apply the technique we used for sin(z), based
on the Mittag-Leffler expansion, except that the assumption that f(z) doesn’t
blow up at infinity is not clear. Nonetheless the expression is correct, and in
fact was the original definition, due to Euler, of the Gamma function.
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1.1 Extension of the integral formula for Γ(z) to all z

An expression for the Γ function in terms of a contour integral can be ob-
tained by noting that (−u)ν has a cut from zero to infinity.
Above the cut,

(−u)ν =
(
|u|e−iπ

)ν
= uνe−iπν ,

while below the cut (−u)ν = uνeiπν . Thus

C

∫

C

e−u (−u)ν du = −
∫ ∞

0

e−uuνe−iπν du+

∫ ∞

0

e−uuνeiπν du = 2i sin πνΓ(ν+1),

which, for z 6∈ Z, gives the formula

Γ(z) =
i

2 sin πz

∫

C

e−u (−u)z−1 du.

Now the integral doesn’t need to go near u = 0, so the restriction to Re z > 0
is no longer necessary. The poles have been explicitly removed.

Define

ψ(z) =
d

dz
ln Γ(z) =

1

Γ(z)

dΓ(z)

dz
.

ψ is called the digamma function. From the product formula

ln Γ(z) = − ln z − γz −
∞∑

n=1

[−z
n

+ ln
(

1 +
z

n

)]

,

so ψ(z) = −1

z
− γ +

∞∑

n=1

(
1

n
− 1

n+ z

)

.

Thus ψ(z) is also an analytic function with simple poles at zero and the
negative integers.

The derivatives of ψ are called polygamma functions,

ψ(n)(z) :=
d

dz
ψ(n−1)(z) =

∞∑

r=0

(−1)n+1n!

(r + z)n+1
n ≥ 1, ψ(0) := ψ.

A Maclaurin expansion for ln Γ(1 + x) gives

ln Γ(1 + x) =
∞∑

n=0

xn

n!

(
d

du

)n

ln Γ(u)

∣
∣
∣
∣
u=1

=
∞∑

r=0

xr+1

(r + 1)!
ψ(r)(1).
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But ψ(r)(1) = (−1)r+1r!
∞∑

p=1

1

pr+1
= (−1)r+1r!ζ(r+1) for r > 0, while ψ(1) =

−γ. We see the Riemann zeta function once again. So

lnΓ(1 + x) = −γx+

∞∑

r=2

(−x)r

r
ζ(r).

This expansion converges for |x| < 1, which is obvious from either side,
noting that ζ(r) −→

r→∞
1.

The Beta Function

We defined the beta function B(u, v) =
∫ 1

0
tu−1(1 − t)v−1dt previously,

and claimed it was Γ(u)Γ(v)/Γ(u+ v). Let’s prove this
Let t = cos2 θ

B(u, v) =

∫ π/2

0

cos2(u−1) θ · sin2(v−1) θ · 2 cos θ sin θ dθ

= 2

∫ π/2

0

cos2u−1 θ sin2v−1 θ dθ.

Then

B(u, v)Γ(u+ v) = 2

∫ π/2

0

cos2u−1 θ sin2v−1 θ dθ

∫ ∞

0

tu+v−1e−t dt

︸ ︷︷ ︸

2

∫ ∞

0

r2u+2t−2e−r2

r dr

= 4

∫ π/2

0

dθ

∫ ∞

0

(r cos θ)2u−1(r sin θ)2v−1e−r2

r dr

= 4

∫ ∞

0

x2u−1e−x2

dx

∫ ∞

0

y2v−1e−y2

dx

=

∫ ∞

0

pu−1e−pdp

∫ ∞

0

qv−1e−qdq

= Γ(u)Γ(v).

In the first line we changed variables t→ r2 and in the penultimate line the
reverse, x→ √

p, y → √
q. Thus we have proven

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
.
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The beta function enjoyed great popularity in the late ’60’s as the Veneziano
model for the scattering of elementary particles, which led to the creation of
string theory.

Consider

B(z, z) = 2

∫ π/2

0

(cos θ)2z−1(sin θ)2z−1dθ

= 2

∫ π/2

0

(
sin 2θ

2

)2z−1

dθ

= 21−2z

∫ π

0

sin2z−1 φ dφ

= 21−2z 2

∫ π/2

0

sin2z−1 φ cos1−1 φ dφ

= 21−2z B(z,
1

2
),

so
Γ(z)Γ(z)

Γ(2z)
= 21−2z Γ(z)Γ(1

2
)

Γ(z + 1
2
)
,

and

Γ(2z) =
22z−1

√
π

Γ(z)Γ(z +
1

2
).

This is known as the duplication formula.
Now we are ready to derive the Stirling series for ln Γ(z), expanding the

expression we found from steepest descents. Recall the Euler-Maclauren
integration formula

∫ n

0

f(x) dx =
1

2
f(0) +

n−1∑

r=1

f(r) +
1

2
f(n) −

∞∑

p=1

B2p

(2p)!

[
f 2p−1(n) − f 2p−1(0)

]

Applying this to f(x) =
1

(z + x)2
as n → ∞, using f (r)(0) =

(−1)r(r + 1)!

zr+2
,

f (r)(∞) = 0, and evaluating explicitly

∫ ∞

0

1

(x+ z)2
dx = − 1

x+ z

∣
∣
∣
∣

∞

0

=
1

z
,

we have
1

z
=

1

2z2
+

∞∑

r=1

1

(z + r)2
−

∞∑

p=1

(2p)!

(2p)!
B2pz

−2p−1.
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But ψ′(z) =
∞∑

r=0

1

(z + r)2
, so ψ′(z + 1) =

∞∑

r=1

1

(z + r)2
and

ψ′(z + 1) =
1

z
− 1

2z2
+

∞∑

p=1

B2pz
−2p−1.

This is an asymptotic expansion, and does not really converge. Ignoring this
fine point,

ψ(z + 1) =

∫ z

ψ′(u+ 1) du = C1 + ln z +
1

2z
−

∞∑

p=1

B2p

2p
z−2p,

so ln Γ(z+1) =

∫ z

ψ(u+1) du = C3+C1z−z+

(

z+
1

2

)

ln z+

∞∑

p=1

B2pz
1−2p

2p(2p−1)
,

which is again an asymptotic expansion. To determine C1,

0 = ln Γ(z+1)−ln z−ln Γ(z) =⇒ C1−1+

(

z − 1

2

)

ln
z

z − 1
+ln z−ln z+O(1/z)

which tells us C1 = 0. Now the log of the duplication formula tells us

ln Γ(2z) − ln Γ(z) − ln Γ(z +
1

2
) − (2z − 1) ln 2 +

1

2
ln π ≡ 0,

→ −1

2
− C3 + (2z − 1

2
) ln(2z − 1) − (z − 1

2
) ln(z − 1) − z ln(z − 1

2
)

−(2z − 1) ln 2 +
1

2
ln π + O(1/z) = −C3 +

1

2
ln(2π) = 0.

Thus C3 = 1
2
ln(2π) and

ln Γ(z + 1) =

(

z +
1

2

)

ln z − z +
1

2
ln(2π)

+
∞∑

p=1

B2p

2p(2p− 1)
z1−2p.

Without the
∑∞

1 this is the Stirling approxima-
tion we found with the method of steepest de-
scents. With the sum, this is an asymptotic ex-
pansion which does not converge for any finite z.
I did some calculations for small z, and found the
best p to stop at.

z best error
2p in Γ(z + 1)

1 6 3 × 10−4

1.5 10 1 × 10−5

2 14 8 × 10−7

3 20 4 × 10−9

4 26 2 × 10−11

5 34 3 × 10−14
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We have already met the incomplete gamma function

Γ(a, x) =

∫ ∞

x

e−tta−1 dt

and derived an asymptotic expansion for it,

Γ(a, x) = xa−1e−x
∞∑

r=0

Γ(a)

Γ(a− r)
x−r = xa−1e−x

∞∑

r=0

(−1)r Γ(r − a+ 1)

Γ(−a + 1)
x−r.

For positive integer a, the first form shows the series terminates. When it
doesn’t terminate the second form is more useful.

There is also the other half of the incomplete Γ,

γ(a, x) =

∫ x

0

e−tta−1 dt = Γ(a) − Γ(a, x).

We have also met E1(x) = Γ(0, x) =: −Ei(−x). Some other functions some-
times met use the “sine integral”

si(x) := −
∫ ∞

x

sin t

t
dt

Ci(x) := −
∫ ∞

x

cos t

t
dt

li(x) :=

∫ x

0

du

ln u
= Ei(ln x) = −E1(−x)

the last being called the logarithmic integral, defined for 0 < x < 1, or as
the principal part of the integral for x > 1.

These definitions, while suggesting real variables and integration along
the real axis, can be analytically continued simply by moving the endpoint,
as long as no singularity is crossed.

Thus

Ei(x) = −
∫ ∞

−x

e−t

t
dt

has a real integrand for −x real
and positive. Analytically continu-
ing means just moving the endpoint,

Ei(−1)
)

)

+ i ε

t[ ]

0

−iEi(    )

Ei(1       − εi

Ei(1       
−x
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but we must specify which way to go around the pole. Thus Ei is given a
cut along the positive real axis.

Ei(ix) = −
∫

C1

e−t

t
dt

= −
∫

C2

−
∫

R
︸︷︷︸

→ 0

(with t = 0 − iv)

= −
∫ ∞

x

eiv

v
dv = Ci(x) + i si(x)

Ei(  )

t[ ]

0

i
C

RC

1

2

As Ei(−x) is real for real x > 0, the Schwarz reflection principle insures

Ei(−ix) = Ei∗(ix) = Ci(x) − i si(x),

so

Ci(x) =
1

2
[Ei(ix) + Ei(−ix)]

si(x) =
1

2i
[Ei(ix) − Ei(−ix)]

just as for the normal exponential, cosine and sine functions.

1.2 The Error Function

The error function is defined as

erfc(z) :=
2√
π

∫ ∞

z

e−t2dt.

Changing variables to u = t2,

erfc(z) :=
1√
π

∫ ∞

z2

u−1/2e−udu =
1√
π

Γ(
1

2
, z2).

The erfc is an incomplete gaussian integral, useful to estimate how often
a gaussian random variable (e.g. experimental data) can be expected to lie
outside

√
2 z standard deviations from the mean. The inside function

erf(z) :=
2√
π

∫ z

0

e−t2dt = 1 − erfc(z)

gives the probability to be within
√

2 z standard deviations.
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1.3 Bessel Functions

Consider the generating function

G(z, t) = ez(t−t−1)/2 =
∞∑

n=−∞
Jn(z)tn.

The functions Jn(z) thus generated are called Bessel functions of the first

kind of order n.
Expanding in powers of z,

G(z, t) = ezt/2e−zt−1/2 =
∞∑

r=0

∞∑

s=0

(−1)s

r! s!

(z

2

)r+s

tr−s

=
∞∑

n=−∞
tn

∑

s

(−1)s

s! (n+ s)!

(z

2

)n+2s

,

so Jn(z) =
∑

s

(−1)s

s! (n+ s)!

(z

2

)n+2s

,

where the sums on s are over all s without the factorial of a negative integer
in the denominator.
For n ≥ 0, the sum on s runs from 0 to ∞. This agrees with the expression
we found earlier from Frobenius.
For negative n, the sum on s runs from −n to ∞. Let r = s + n = s− |n|,

J−|n|(z) =
∑

r

(−1)r+|n|

(r + |n|)!r!
(z

2

)|n|+2r

= (−1)nJ|n|(z).

Thus J−n and Jn are actually the same function, up to sign. Each has a
power series expansion beginning with zn.

Given a generating function, one can often find a recursion relation. Here

∂

∂t
G(z, t) =

(

1 +
1

t2

)
z

2
G(z, t) =

∑

n tn−1Jn(z) =
z

2

∑ (
tn + tn−2

)
Jn(z).

Matching powers of tn−1,

nJn(z) =
z

2
(Jn+1 + Jn−1) for n ≥ 1.
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Such relations are common for orthogonal polynomials. A formula for the
derivative

∂

∂x
G(x, t) =

(
t

2
− 1

2t

)

G(x, t) =⇒ J ′
n(x) =

1

2
Jn−1 −

1

2
Jn+1 =

n

x
Jn − Jn+1.

Consider any set of functions Zν(x) which satisfy these two equations

(a) 2Z ′
ν(x) = Zν−1(x) − Zν+1(x) for any ν

and (b) 2νZν(x) = xZν+1(x) + xZν−1(x).

Then xZ ′
ν =

x

2
Zν−1 −

1

2
(2νZν − xZν−1) (1)

= xZν−1 − νZν (2)

Similarly xZ ′
ν = −xZν+1 + νZν . (3)

Differentiate (2), write (3) with ν → v−1, and write (2) times ν/x:

xZ ′′
ν +(ν+1)Z ′

ν −xZ ′
ν−1 −Zν−1 = 0

xZ ′
ν−1 +xZν +(1−ν)Zν−1 = 0

−νZ ′
ν −ν

2

x
Zν +νZν−1 = 0

Adding: xZ ′′
ν +Z ′

ν +
x2−ν2

x
Zν = 0

or
x2Z ′′

ν + xZ ′
ν +

(
x2 − ν2

)
Zν = 0,

which is the Bessel equation.
Thus Jν(x) is a solution of Bessel’s equation when ν is an integer.
If we want to extract Jn(x) from G(x, t), the standard method is

∮
dt

2πitn+1
G(x, t) = Jn(x),

where the contour circles the origin. Choosing t = eiθ,

Jn(x) =
1

2π

∫ 2π

0

e−inθeix sin θ dθ

=
1

2π

∫ π

−π




cos(nθ − x sin θ)

︸ ︷︷ ︸

sym

−i sin(nθ − x sin θ)
︸ ︷︷ ︸

antisym




 dθ

=
1

π

∫ π

0

cos(nθ − x sin θ) dθ
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where the integral of the term antisymmetric under θ → −θ vanishes.
Bessel functions occur in problems with Laplace’s equation in cylindrical

coordinates, Fraunhofer diffraction through a circular aperature, bag models,
etc..

Return to the expression

Jn(x) =

∮
dt

2πitn+1
e

x

2 (t−t−1).

The integrand is analytic everywhere in t
except at t = 0, and vanishes rapidly as
t → −∞ for x > 0, so the contour can be
deformed

t[ ]

0

2C

C1

In this form, there is no particular reason to restrict n to integers, so
define

Jν(x) =

∫

C2

dt

2πitν+1
e

x

2 (t−t−1) Re x > 0.

As we approach t = 0 along positive values, the exponential again vanishes
for Re x > 0, so we can write

Jν(x) =

∫

C3

+

∫

C4

.

But this we recognize as

1

2
H(1)

ν (x) +
1

2
H(2)

ν (x),

t[ ]C

0

4

3C

where H
(1)
ν (x) was met in our discussion of steepest descents, where we found

H(1)
ν (x) ≈

√

2

πx
ei(x− νπ/2 − π/4) x→ ∞

H(2)
ν (x) = H(1) ∗(x∗)

so

Jν(x) ≈
√

2

πx
cos

(

x− ν
π

2
− π

4

)

for large x

Consider again Jν(x):

Jν(x) =

∫

C

dt

2πi tν+1
ex(t−t−1)/2 .

Let u = −xt/2, so

u=   xt/2[  ]
x>C 0)(

−
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Jν(x) = −
(x

2

)ν
∫

C

du

2πi(−u)ν+1
e−u+ x

2

4
u−1

= −
(x

2

)ν
∫ ∞

0

du

2πiuν+1

(
−e−iπν + eiπν

)
e−u

∞∑

s=0

(x

2

)2s u−s

s!

=

∞∑

s=0

(x

2

)ν+2s −2i sin πν

2πi
︸ ︷︷ ︸

(−1)s sin π(−s− ν)

π

Γ(−s− ν)

n!

But Γ(x)
sin(πx)

π
=

1

Γ(1 − x)
, so

Jν(x) =
∞∑

s=0

(−1)s
(x

2

)ν+2s 1

s! Γ(1 + s+ ν)
. (4)

This is exactly the form we had before for integral ν > 0, but extended to
all ν other than negative integers.

The definition of Jν(z) for nonintegral ν cannot be given directly by the
generating function, but is given by extending the series definition as we have
derived in Eq. (4). You will show for homework that the crucial recursion
relations for Zν are satisfied, so Jν is a solution of Bessel’s equation. For
noninteger ν the sum starts at s = 0, so J−ν starts at x−|ν| and is not
proportional to Jν . Thus

Nν(x) :=
Jν(x) cosπν − J−ν(x)

sin πν

is nonzero, and, as a superposition of two solutions, is a solution of the Bessel
equation.

When ν is an integer, this expression needs to be evaluated by l’Hôpital’s
rule,

Nn(x) =

(−1)n ∂Jν(x)

∂ν

∣
∣
∣
∣
ν=n

− πJν sin(πn) +
∂J+ν

∂ν

∣
∣
∣
∣
ν=−n

π cosπn
.
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The dominant term as x → 0 in the
∂J+ν

∂ν

∣
∣
∣
∣
ν=−n

term is the s = 0 piece,

which contributes

(−1)n

π

∂

∂ν

[(x

2

)ν 1

Γ(ν + 1)

]

ν=−n

=
1

π

(−x
2

)−n −ψ(−n + 1)

Γ(−n + 1)
+

1

π
ln

(x

2

)

·
(−x

2

)−n
1

Γ(1 − n)
.

ψ(z)/Γ(z) is entire and does not vanish for nonpositive integers. So for n = 0,

for small x, Nn(x) ∼ 1

π
ln
x

2
, while for n > 0, it is ∝ x−n. So Nn(x) is the

solution of Bessel’s equation which is not regular at the origin. It is called
the Neumann Function.

From the asymptotic expression for Jν ,

Jν(x) ∼
√

2

πx
cos

(

x− νπ

2
− π

4

)

,

we see

Nν(x) ∼
√

2

πx

[

cosπν cos
(
x− νπ

2
− π

4

)
− cos

(
x+ νπ

2
− π

4

)

sin πν

]

∼
√

2

πx
sin

(

x− νπ

2
− π

4

)

.

[the numerator inside the [ ] is of the form cosA cosB − cos(A + B) with
B = x − πν/2 − π/4.] So Nν is 90◦ out of phase with Jν at large x. We
also see that

Jν(x) + iNν(x) ∼
√

2

πx
e
i
(

x− νπ

2
− π

4

)

,

which is just the asymptotic form of H
(1)
ν (x). In fact,

H(1)
ν (x) = Jν(x) + iNν(x).

Bessel’s equation z2Z ′′
ν + zZ ′

ν + (z2 − ν2)Zν = 0 is satisfied by Jν(z) and
Nν(z), for complex z. Sometimes we meet the related equation

x2y′′ + xy′ − (x2 + ν2)y = 0 Modified Bessel Equation
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If we set z = ix, y(x) = Z(ix), y′(x) = iZ ′(ix), and y′′(x) = −Z ′′(ix), so we
see that y(x) satifies the modified Bessel equation if Z satisfies the Bessel
equation. So does any constant times y, so

Iν(x) := i−νJν(ix)

is a solution (regular for ν ∈ N) of the modified Bessel equation. From the
power series expansion for J ,

Jν(ix) =
∑

s=0

(−1)s

s! Γ(s+ ν + 1)

(
ix

2

)ν+2s

we see

Iν(x) =
∑

s=0

1

s! Γ(s+ ν + 1)

(x

2

)ν+2s

,

and I is a real function for real ν, i.e.

I∗ν (z∗) = Iν(z).

Just as for J , Iν and I−ν are independant solutions for ν not an integer, but
when ν is an integer one needs another solution. The modification appled to
the Hankel function

Kν(x) =
π

2
iν+1H(1)

ν (ix)

provides such a solution.

Another equation we have met, in separating the Helmholtz equation in
spherical coordinates, is

r2R′′ + 2rR′ + [k2r2 − ℓ(ℓ+ 1)]R = 0, (5)

which differs from Bessel’s equation by the 2 on the R′ term. The substitution

Z(x) =
√
krR(kr)

gives x2Z ′′ + xZ ′ + [x2 − (ℓ + 1
2
)2]Z = 0, which is Bessel’s equation with

ν = ℓ + 1
2
.
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The functions R, renormalized, are called spherical Bessel functions. In
particular

jℓ(x) =

√
π

2x
Jℓ+1/2(x)

nℓ(x) =

√
π

2x
Nℓ+1/2(x)

h
(i)
ℓ (x) =

√
π

2x
H

(i)
ℓ+1/2(x) i = 1, 2.

In fact the spherical Bessel functions of integer index are really elementary
functions. For example,

j1(x) =
sin x

x2
− cosx

x
.

Example: A quantum mechanical particle in a spherical, infinitely deep well:

− ~
2

2m
∇2ψ = Eψ, r < a

ψ = 0 r ≥ a

This is a problem with spherical symmetry, and within r < a is Helmholtz
equation. We have seen that separation of variables ψ = R(r) Θ(θ) Φ(φ) gives
for R our equation (5), where ℓ is an integer describing the solution of the Θ

equation and giving the angular momentum of the state, and k2 =
2mE

~2
.

So the solution for R is R(r) ∝ jℓ(kr). The second solution is excluded
because it is singular at r = 0. The boundary condition ψ = 0 for r = a
requires R(a) = 0 =⇒ jℓ(ka) = 0 =⇒ Jℓ+1/2(ka) = 0. We see that the zeros
of the Bessel function determine the possible energies and angular momenta.
The lowest energy state has the smallest E, smallest k. Looking at a table of
zeros of jℓ(x), e.g. Abramowitz and Stegun p. 467, we see that the smallest
one is ℓ = 0, x = π, and the lowest energy solution is

E0 =
~

2π2

2ma2
.

Note that even though there is no potential within the sphere, the particle
has a nonzero minimal energy, due roughly to Heisenberg’s uncertainty in its
momentum.
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1.4 Solutions to Laplace’s equation

For Laplace’s equation, k = 0 in (5). The radial equation becomes

d

dr
r2dR

dr
= ℓ(ℓ+ 1)R

with solutions R ∝ rℓ and R ∝ r−ℓ−1. Outside a region of static charge,
the electrostatic potential satisfies Laplace’s equation and gives a potential
which falls off at r = ∞. One can expand the potential in powers of 1/r.

We will begin with a point charge on the z
axis. Consider a charge at z = a and the potential
at an arbitrary point (r, θ, φ) in spherical polar
coordinates. Then

Φ =
q

4πǫ0

1

(r2 + a2 − 2ar cos θ)1/2

=
q

4πǫ0

∑

ℓ

aℓ

rℓ+1
Pℓ(cos θ) for r > a.

a r

r  + a  −2ar     2 2 cosθ

θ
0

Thus the generating function for the Pℓ(x) is

G(t, z) =
(
1 + t2 − 2tz

)−1/2

=
∑

ℓ

Pℓ(z)t
ℓ.

Pℓ are the Legendre Polynomials.
Conside a pair of charges, +q at z = a and −q at z = −a. At (r, θ, φ)

Φ =
q

4πǫ0

∑

ℓ

aℓ

rℓ+1
[Pℓ(cos θ) − Pℓ(− cos θ)] .

We note from the generating function G(t, z) = G(−t,−z) so
∑

ℓ Pℓ(z)t
ℓ =

∑

ℓ Pℓ(−z)(−1)ℓtℓ, or
Pℓ(−z) = (−1)ℓPℓ(z).

Thus for our two charges, the even ℓ’s cancel, and

Φ =
2q

4πǫ0

∑

ℓ odd

aℓ

rℓ+1
Pℓ(cos θ).
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Now consider the limit where the charges get closer together but individually
stronger, with p = 2qa held fixed. Then the first term in the sum

Φ =
p

4πǫ0r2
P1(cos θ) survives

while all the higher terms are O(pa2) → 0. p is called the dipole moment,
and as a→ 0, the charge distribution becomes a pure dipole.

Any localized axially symmetric distribution of charges will give a poten-
tial, outside the charged region, which can be written

Φ =
∑

ℓ

dℓ

4πǫ0rℓ+1
Pℓ(cos θ)

where dℓ =
∫
ρ zℓ.

The dℓ are called the multipole moments, but with funny names, dℓ =
2ℓ’th pole, e.g.

d0 is the monopole moment (equals the total charge)
d1 is the dipole moment
d2 is the quadrupole moment
d3 is the octupole moment

etc.
The generating function method is good for finding recursion relations.

Consider
∂G(t, x)

∂t
=

x− t

(1 − 2xt+ t2)3/2
=

∑

n

nPn(x)tn−1

so

(x− t)G(t, x) = (1 − 2xt + t2)
∑

nPnt
n−1 =

∑

ℓ=0

Pℓ(x) t
ℓ (x− t),

or, collecting terms of order tr,

(r + 1)Pr+1(x) − 2x r Pr(x) + (r − 1)Pr−1 = xPr(x) − Pr−1(x)

or (2r + 1)xPr(x) = (r + 1)Pr+1(x) + rPr−1(x), (6)

a three term recursion relation of the usual type.
Now for derivatives:

∂G

∂x
=

t

(1 − 2xt + t2)3/2
=

∑

P ′
n(x)tn,
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so t G =
∑
Prt

r+1 = (1 − 2xt+ t2)
∑
P ′

nt
n. Again equating like powers of t,

tr+1:
Pr = P ′

r+1 − 2xP ′
r + P ′

r−1. (7)

Twice the x derivative of (6) gives

(2r + 1)Pr + (2r + 1) (Pr + 2xP ′
r)

︸ ︷︷ ︸

P ′

r+1
+P ′

r−1

= (2r + 1)
(
P ′

r+1 + P ′
r−1

)
+ P ′

r+1 − P ′
r−1

so
(2r + 1)Pr = P ′

r+1 − P ′
r−1. (8)

Half of ((7) + (8)) gives (r + 1)Pr = P ′
r+1 − xP ′

r, (9)

Half of ((8) − (7)) gives rPr = xP ′
r − P ′

r−1, (10)

Incrementing r in (10) by one gives (r+1)Pr+1 = xP ′
r+1−P ′

r, and subtracting
x times (9),

(r + 1) (Pr+1 − xPr) = −(1 − x2)P ′
r (11)

Differentiating and using (9)

(r + 1)P ′
r+1

︸ ︷︷ ︸

(r+1)2Pr+(r+1)xP ′

r

−(r + 1)Pr − (r + 1)xP ′
r +

d

dx

[
(1 − x2)P ′

r

]
= 0,

or
d

dx
(1 − x2)

dPr

dx
+ r(r + 1)Pr = 0, (12)

which is, indeed, Legendre’s equation1.
It has singular points at ±1, and a weight function of 1 = (1−x)0(1+x)0,

so we see that it is a special case of Jacobi with α = β = 0, with g =
(1 − x2), w = 1. Then we expect Rodrigues’ formula

Pr(x) =
1

ar

dr

dxr
(1 − x2)r.

To evaluate ar, note first that Pℓ(±1) is easy to evaluate, because

G(t,±1) = (1 + t2 ∓ 2t)−1/2 = (1 ∓ t)−1 =
∑

n

(±t)n =
∑

n

PN (±1)tn,

1The m = 0 form of the associated Legendre equation we saw in Lecture I, page 2.
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so

Pn(±1) = (±1)n, or







Pn(1) = 1 all n,

Pn(−1) =

{
1 even n,
−1 odd n

.

Now
dr

dxr
{(1 − x)r(1 + x)r}

∣
∣
∣
∣
x=1

= (1 + x)r dr

dxr
{(1 − x)r}

∣
∣
∣
∣
x=1

because all other terms have surviving factors of 1 − x, which vanish. This
is (−2)rr!, so ar = (−1)r2rr!.

In our treatment of orthogonal polynomials we showed that Rodrigues’
formula satisfies the Legendre equation. We also have that the polynomials
are orthogonal on [−1, 1]:

∫ 1

−1

Pℓ(x)Pn(x)dx = (−1)ℓ+n 2−ℓ−n

ℓ! n!

∫
dℓ

dxℓ
(1 − x2)ℓ d

n

dxℓ
(1 − x2)n dx

=
(−1)n 2−ℓ−n

ℓ! n!

∫

(1 − x2)ℓ

(
d

dx

)n+ℓ

(1 − x2)n dx,

by integration by parts. If ℓ > n, there are too many derivatives, and we get
zero. If n = ℓ, (d/dx)2ℓ(1 − x2)ℓ = (−1)ℓ(2ℓ)!, while

∫ 1

−1

(
1 − x2

)ℓ
dx =

∫ 1

−1

(1−x)ℓ(1+x)ℓdx = 22ℓ+1B(ℓ+1, ℓ+1) = 22ℓ+1 ℓ!2

(2ℓ+ 1)!
,

so all together,

∫ 1

−1

P 2
ℓ (x)dx =

(−1)ℓ2−2ℓ

ℓ!2
(−1)ℓ(2ℓ)!

22ℓ+1(ℓ!)2

(2ℓ+ 1)!
=

2

2ℓ+ 1
.

Note G(t, cos θ) = (1 − 2t cos θ + t2)
−1/2

=
[(

1 − teiθ
) (

1 − te−iθ
)]−1/2

.

Recall (1 − x)−1/2 =
∑

r

(
−1/2
r

)

(−1)rxr =
∑

r

−1
2

−3
2
· · · −(2r−1)

2

r!
(−1)rxr =

∑

r

2−r (2r − 1)!!

r!
xr, so G(t, cos θ) =

∑

rs

2−r−s(2r − 1)!!(2s− 1)!!

r!s!
tr+sei(r−s)θ,

and
Pℓ(cos θ) = sum of positive coefficients ×ei(r−s)θ

|Pℓ(cos θ)| ≤ sum of the same coefficients = Pℓ(1) = 1,
so the Legendre polynomial, on [−1, 1] is bounded by ±1.
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We have seen that the radial solutions rℓ and r−ℓ−1 of Laplace’s equa-
tion are coupled to the solutions Pℓ(cos θ) for the polar angle. Thus the
electrostatic potential in chargeless space (for an axially symmetric solution)
is

V =
∞∑

n=0

anr
nPn(cos θ) +

∞∑

n=0

bnr
−n−1Pn(cos θ).

Consider a neutral conducting sphere of radius r0 in an otherwise uniform
field, which would have V = −E0z = −E0r cos θ. Then at large r, the
potential is unaffected and a1 = −E0, an = 0, n > 1. On the sphere V =

a0 + a1r0P1(cos θ)+

∞∑

n=0

bnr
−n−1
0 Pn(cos θ) = const, independent of θ. But the

Pn’s are linearly independent functions of θ, so b1r
−2
0 = −a1r0, and bn = 0

for n > 1. P1(cos θ) = cos θ, Thus

V = a0 +
b0
r
− E0

(

r − r3
0

r2

)

cos θ.

The 1/r potential corresponds to a charge. Indeed, using a large sphere and
Gauss’ law, we can show b0 = Q/4πǫ0, where Q is the total charge on (and
inside) the sphere. a0 is an arbitrary constant but matches the conditions
we’ve imposed (V → −E0z + 0) if we choose a0 = 0.

That problem could have been done without Legendre polynomials. Now
consider a conducting thin ring of radius r0, with a total charge q on it, lying
in the x, y plane.

For r > r0, the space is chargeless and, assuming no background field,
and choosing Φ → 0 as r → ∞, and using axial symmetry,

Φ =
∑

bnr
−n−1Pn(cos θ)

It is easy to evaluate Φ on the z axis, because then all the charge is equally
far away, at

√

z2 + r2
0, so

Φ(r, θ = 0) =
q

4πǫ0

(
r2 + r2

0

)−1/2

=
q

4πǫ0r

(

1 +
r2
0

r2

)−1/2

=
q

4πǫ0

∞∑

n=0

r2n
0

r2n+1

(
−1/2
n

)

=
∑

bnr
−n−1.
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This shows bn = 0 for n odd, b2n =
q

4πǫ0
r2n
0

(
−1/2
n

)

=
qr2n

0

4πǫ0

(−1)n(2n− 1)!!

2n n!
,

so in general

Φ(r, θ) =

∞∑

n=0

qr2n
0

4πǫ0 r2n+1
(−1)n (2n− 1)!!

2n n!
P2n(cos θ).

1.5 Extension to Pν

The Rodrigues formula

Pn(z) =
1

2n n!

(
d

dz

)n
(
z2 − 1

)n

can be written

Pn(z) =
2−n

2πi

∮
(t2 − 1)n

(t− z)n+1
dt

where the integral circles z.

z

1−1

C

C2

1

We define the Legendre functions by extending this form from integer
n to ν, not necessarily integral. But if n is not an integer, there are cuts
starting at z, 1, and −1. We want our contour to come back to where it
started, without crossing a cut. So we de-
fine the integrand with cuts from z to 1
and from −1 to ∞ along the negative real
axis and define the Legendre function as

Pν(z) =
2−ν

2πi

∮

C

(t2 − 1)ν

(t− z)ν+1
dt. 1−1

C

z

Pν(z) is a solution of Legendre’s equation, as
(
1 − z2

)
P ′′

ν (z) − 2zP ′
ν(z) + ν(ν + 1)Pν(z)

=
2−ν

2πi

∮

C

(t2 − 1)ν

(t− z)ν+3
dt

·
[(

1 − z2
)
(ν + 1)(ν + 2) − 2z(ν + 1)(t− z) + ν(ν + 1)(t− z)2

]

=
2−ν(ν + 1)

2πi

∮

C

(t2 − 1)ν

(t− z)ν+3
dt

[
νt2 − 2tz(v + 1) + ν + 2

]

=
2−ν(ν + 1)

2πi

∮

C

d

dt

[
(t2 − 1)ν+1

(t− z)ν+2

]

dt,
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which, as long as we make sure our [] comes back to what we started with,
must give zero.

There is another solution to the differential equation. You might expect
it to be P−ν−1, which satisfies the same equation, but this is, in fact, just Pν .

The second function is called Qν , and is
the integral over the figure eight contour as
shown, where the cuts are to be considered
running from −1 to 1 and from z to ∞.
The contour goes onto the second sheet as
it goes below the axis towards z = −1, but
comes back onto the first sheet returning
towards z = 1. Thus it never need include
a discontinuity.

1
C

z

−1

We will not consider these further. Whittaker and Watson “A Course in
Modern Analysis” is a good reference for more.

1.6 Associated Legendre Polynomials

We have so far been restricted to axially symmetric problems. The separation
of variables gave us the azimuthal dependence Φ(φ) = eimφ withm an integer,
and then for θ,

1

sin θ

d

dθ
sin θ

dΘ

dθ
+

(

ℓ(ℓ+ 1) − m2

sin2 θ

)

Θ = 0.

With x = cos θ, V (x) = Θ(θ) this gives

(1 − x2)
d2V

dx2
− 2x

dV

dx
+

(

ℓ(ℓ+ 1) − m2

1 − x2

)

V = 0.

Only for m = 0 is this the Legendre equation itself.
We can get solutions to the associated equation by differentiating Legen-

dre’s equation m times. This is essentially applying an angular momentum
raising operator, if you know what that means. As you probably don’t, let’s
just follow blindly:
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(
d

dx

)m
[(

1 − x2
)
P ′′

ℓ − 2xP ′
ℓ + ℓ(ℓ+ 1)Pℓ

]
= 0

=

[
(
1 − x2

) d2

dx2
− 2mx

d

dx
−m(m−1) − 2x

d

dx
− 2m+ ℓ(ℓ+1)

](
d

dx

)m

Pℓ

︸ ︷︷ ︸

u

so

[
(
1 − x2

) d2

dx2
− 2x(m+ 1)

d

dx
+ ℓ(ℓ+ 1) −m(m+ 1)

]

u (13)

Now let V = (1 − x2)
m/2

u (which is u sinm θ)

u′ =
(
1 − x2

)−m/2
V ′ +mx

(
1 − x2

)−m/2−1
V

(
1 − x2

)
u′′ =

(
1 − x2

)1−m/2
V ′′ +m

(
1 − x2

)−m/2
V

+m(m+ 2)x2
(
1 − x2

)−m/2−1
V + 2mx

(
1 − x2

)−m/2
V ′

so Eq. (13) is

(1 − x2)−m/2

{

(
1 − x2

)
V ′′ + 2mxV ′ +mV +

m(m+2)x2

1 − x2
V

−2x(m+1)V ′ − 2m(m+1)
x2

1 − x2
V + (ℓ(ℓ+1) −m(m+1))V

}

= 0

or
(
1 − x2

)
V ′′ − 2xV ′ +

[

ℓ(ℓ+ 1) − m2

1 − x2

]

V = 0, and V satisfies the As-

sociated Legendre Equation. We call V

Pm
ℓ (x) :=

(
1 − x2

)m/2
(
d

dx

)m

Pℓ(x) for m > 0.

From Rodrigues, Pℓ(x) =
(−1)ℓ

2ℓ ℓ!

(
d

dx

)ℓ
(
1 − x2

)ℓ
, we have

Pm
ℓ (x) :=

(−1)ℓ

2ℓ ℓ!

(
1 − x2

)m/2
(
d

dx

)ℓ+m
(
1 − x2

)ℓ

which applies to negative m’s as well, as long as m ≥ −ℓ.
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1.7 Orthogonality

Consider a fixed m, but let ℓ vary. Then we would expect orthogonality with
the weight funtion w = 1. Indeed,

∫ 1

−1

Pm
ℓ (x)Pm

n (x) =
2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓn.

This is shown in gory detail in Arfken. With ℓ = n but m varying, there is
orthogonality with weight w = 1/(1− x2), but this is not useful. In physical
problems, orthogonality in the m’s comes from the φ equation, Φ(φ) = eimφ.
It is really the combination

Y m
ℓ (θ, φ) := (−1)m

(
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!

)1/2

Pm
ℓ (cos θ)eimφ

which has physical significance. These are called the spherical harmonics.
The angular integral

∫ π

0

sin θ dθ

∫ 2π

0

dφ Y m1 ∗
ℓ1

(θ, φ) Y m2

ℓ2
(θ, φ)

=

∫ 1

−1

dxPm1

ℓ1
(x)Pm2

ℓ2
(x)

∫ 2π

0

ei(m2−m1)φdφ

(−1)m1+m2

{
(2ℓ1 + 1)(2ℓ2 + 1)

(4π)2

(ℓ1 −m1)!

(ℓ1 +m1)!

(ℓ2 −m2)!

(ℓ2 +m2)!

}1/2

The φ integral gives 2πδm1,m2
, and then, as the m’s are now equal, the x

integral gives
2

2ℓ1 + 1

(ℓ1 +m1)!

(ℓ1 −m1)!
δℓ1,ℓ2, so

∫ π

0

sin θ dθ

∫ 2π

0

dφ Y m1 ∗
ℓ1

(θ, φ)Y m2

ℓ2
(θ, φ) = δℓ1,ℓ2δm1,m2

.

The Y m
ℓ ’s are a set of complete functions on the 2-sphere.

In quantum mechanics, the wave functions in a spherically symmetric
problem are proportional to spherical harmonics, with angular momentum
~ℓ and z-component m~. The angular momentum operator itself is ~L =
−i~~r × ~∇, and the spherical harmonics are eigenfunctions of L2 and Lz:

L2 Y m
ℓ = ~

2ℓ(ℓ+ 1)Y m
ℓ

Lz Y
m
ℓ = ~mY m

ℓ
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1.8 Other Orthogonal Polynomials

We have extensively considered the Legendre polynomials, one special case
of the Jacobi orthogonal polynomials associated with the interval [−1, 1]. We
will not consider the others except to mention that Chebyshev polynomials
are in this class, and are useful in some contexts, especially computation.

We now consider the other two classes. First, the Hermite polynomi-
als, associated with (−∞,∞) with a weight function w = e−x2

and g = 1.
Rodrigues’ formula gives

Hn(x) = (−1)nex2

(
d

dx

)n

e−x2

,

where I have chosen an = (−1)n by convention.
From this expression it is clear that Hn(−x) = (−1)nHn(x). Rewriting

it as Dn 1, where D is the differential operator −ex2 d
dx
e−x2

= 2x − d
dx

, it is
clear that Hn is a polynomial of degree n.

We can write the
(

d
dx

)n
e−x2

as a Cauchy integral

Hn(x) = (−1)nex2 n!

2πi

∮
e−z2

dz

(z − x)n+1
.

First, get rid of the (−1)n by changing the sign of x

Hn(x) = (−1)nHn(−x) = ex2 n!

2πi

∮
e−z2

dz

(z + x)n+1

=
n!

2πi

∮
e−t2+2xt

tn+1
dt

where the contour in t circles the origin. This is clearly n! times the coefficient
of tn in e−t2+2xt = G(x, t), so

G(x, t) =

∞∑

n=0

1

n!
tnHn(x).

[Note G generates Hn(x)/n! using our usual definition]
Clearly

∂

∂t
G(x, t) =

∑

n

tn

n!
Hn+1(x) = −2(t− x)G(x, t)

= −2
∑ tn

(n− 1)!
Hn−1 + 2x

∑ tn

n!
Hn
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so Hn+1 = −2nHn−1 + 2xHn. (14)

∂G(x, t)

∂x
=

∑

n

tn

n!
H ′

n(x) = 2tG(x, t) = 2
∑ tn

(n− 1)!
Hn−1

so
H ′

n(x) = 2nHn−1(x) (15)

Plug (15) into (14): Hn+1 = −H ′
n + 2xHn and differentiate

H ′
n+1 = −H ′′

n + 2Hn + 2xH ′
n = 2(n+ 1)Hn,

so H ′′
n − 2xH ′

n + 2nHn = 0.
To get the equation in self-adjoint form with p = w = e−x2

as expected,
multiply by e−x2

to get

d

dx
e−x2 dHn

dx
+ 2ne−x2

Hn = 0

so λ = 2n.
These are orthogonal polynomials, so

∫ ∞

−∞
e−x2

Hn(x)Hm(x) = hnδmn.

hn can be evaluated, and the orthogonality verified, by using the generating
function

∑

m,n

smtn

m!n!

∫ ∞

−∞
e−x2

Hn(x)Hm(x) =

∫ ∞

−∞
e−x2

e−t2+2tx−s2+2sx dx

=

∫ ∞

−∞
e−(x−t−s)2dx e2ts = e2ts

∫ ∞

−∞
e−u2

du =
√
π

∑

n

2nsntn

n!

so

∫ ∞

−∞
e−x2

Hn(x)Hm(x) =
√
π 2n n! δmn.

The wave functions for the quantum mechanical harmonic oscillator are

ψn(x) = 2−n/2π−1/4(n!)−1/2

︸ ︷︷ ︸

normalization constant

e−x2/2Hn(x),

which are orthogonal and satisfy
(

− d2

dx2
+ x2

)

ψ = (2n+ 1)ψ.
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If appropriately scaled, this becomes the Schrödinger equation for a potential
V = 1

2
kx2.

The last equation to consider in detail from the orthogonal polynomial
discussion is the Generalized Laguerre, with singular points at 0 and ∞,

(
d

dx
xα+1e−x d

dx
+ λxαe−x

)

y = 0.

For α = 0, this is the Laguerre equation, with regular solutions Ln(x) for
λ = n an integer, with g(x) = x and w(x) = e−x.

Rodrigues gives

Ln(x) =
ex

n!

(
d

dx

)n
(
xne−x

)
=

ex

2πi

∮
zn e−z

(z − x)n+1
dz,

so

G(x, t) =
∑

Lnt
n =

ex

2πi

∮
∑

n=0

(
zt

(z − x)

)n
e−z

z − x
dz

=
ex

2πi

∮
1

1 − zt
z−x

e−z

z − x
dz

=
ex

2πi

∮
e−z

z − zt− x
dz =

exe−
x

1−t

1 − t
=
e−xt/(1−t)

1 − t
.

For α = k, λ = n we can rewrite the generalized Laguerre equation, with
g(x) = x, w(x) = xk e−x, and λ = n as

(

x
d2

dx2
+ (k + 1 − x)

d

dx
+ n

)

Lk
n(x) = 0.

Rodrigues gives Lk
n =

x−k

n!
ex d

n

dxn
xn+ke−x, (well, with the normalization I

chose).
The wave function for a hydrogenic atom (a single electron of charge −e

rotating nonrelativistically around a nucleus of charge Ze) is

ψnℓm(r, θ, φ) ∝ e−αr/2(αr)ℓL2ℓ+1
n−ℓ−1(αr)Y

m
ℓ (θ, φ)

where α = 2
Ze2m

~2n
, where n = 1, 2, 3, . . . is called the shell, and ℓ and m are

the angular momentum and its z component, respectively, in units of ~.
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The hydrogen atom and the harmonic oscillator are basically the only
radial problems in quantum mechanics which are exactly solvable. Thus
the other functions in this chapter do not have direct physical applications,
although they are interesting in mathematical contexts. I just mention that

• Chebyshev polynomials are used in numerical methods for polynomial
approximations on a bounded interval.

• The hypergeometric functions 2F1(a, b, c, x) is a broad class coming
from a second order differential equation with three regular singular
points, including infinity. Many other functions are special cases of
this function. The confluent hypergeometric function 1F1(a, c, x) is a
singular limit

1F1(a, c, x) = lim
λ→∞ 2F1(a, λ, c, x/λ)

which has a regular singularity at 0 and an irregular one at ∞. The
erf, Jν , Iν , Ln, and Lk

n are special cases.


