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Physics 464/511 Lecture I Fall, 2016

1 Differential Equations

Now it is time to return to differential equations

Laplace’s: ∇2ψ = 0

Poisson’s: ∇2ψ = −ρ/ǫ0

Helmholtz: ∇2ψ + k2ψ = 0

Diffusion: ∇2ψ − 1
a2
∂ψ

∂t
= 0

Wave Equation: 2ψ = 0, 2 := ∇2 − 1
c2

∂2

∂t2

Klein-Gordon: 2ψ − µ2ψ = 0

Schrödinger: − ~2

2m
(∇2 + V )ψ − i~∂ψ

∂t
= 0

All are of the form Hψ = F , where H is a differential operator which
could also depend on ~r,

H

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂t
, x, y, z, t

)

Simplifications:

1. All the equations are linear in ψ. This is crucial.

2. They are second order differential equations. In fact all of these are
differential only through involving ∇2 and ∂/∂t. This is because the
physics involved is rotationally invariant.

We will start with the results of the method of separation of variables.
We already considered the Helmholtz equation in spherical coordinates r, θ,
and φ. Recall that periodicity in φ required Φ(φ) = eimφ, with m an integer.
This solution will appear whenever the equation and boundary conditions
are symmetric under rotations about one axis.

In cylindrical coordinates Z(z) ∝ eaz for some real or imaginary a. There
are no automatic boundary conditions here, but the particular problem may
impose them, determining possible a’s. For example, we might have a closed
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pipe with Z(z) = 0 at z = 0 and z = L, or we might require good behavior
as z → ±∞.

In spherical coordinates we found Legendre’s equation

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ ℓ(ℓ+ 1)Θ −
m2

sin2 θ
Θ = 0,

where I have replaced the constant Q by ℓ(ℓ+1) for future convenience. Let

z = cos θ, so
d

dθ
= − sin θ

d

dz
. Then if y(z) := Θ(θ),

d

dz

[
(
1 − z2

) dy

dz

]

+ ℓ(ℓ+ 1)y −
m2

1 − z2
y = 0

is another form of Legendre’s equation. We may also write it as

(
1 − z2

) d2y

dz2
− 2z

dy

dz
+

(

ℓ(ℓ+ 1) −
m2

1 − z2

)

y = 0.

The radial coordinate satisfied R(r) of Bessel’s equation

r2d
2R

dr2
+ 2r

dR

dr
+

(
k2r2 − ℓ(ℓ+ 1)

)
R = 0

and a similar Bessel’s equation arose in cylindrical coordinates. We will
also want to consider the Laguerre equation which arises in the radial wave
functions of the hydrogen atom, and Hermite’s from the wave function for a
harmonic oscillator. Chebyshev’s is important in curve fitting in numerical
analysis.

Because all of these equations are second order linear equations, they can
be written

y′′ + P (x)y′ +Q(x)y = F (x),

where there may be values of x for which P and Q are singular. (e.g. r = 0
or z = ±1.)

If either P or Q (or both) are singular at x = x0, x0 is called a singular

point. If not, it is called an ordinary point.
If x0 is a singular point, but (x− x0)P (x) and (x−x0)

2Q(x) are analytic
at x = x0, x0 is a regular singular point. Otherwise it is called an essential

singularity.
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We say that x = ∞ is an ordinary point, a regular singular point, or an
essential singularity if, after changing variables to z = 1/x, z = 0 is that
kind of point.
We are nearly always interested in equations where all singularities except
at infinity are regular.

Our equation is linear in y. If F (x) = 0 it is also homogeneous. The
problem of finding all solutions with a given F (x) can be reduced to

• Find one solution.

• Find all solutions of the homogeneous equation with F set to zero.
Then the general solution is the sum of the one solution with F and an
arbitrary solution to the homogeneous equation.

1.1 Frobenius’ Method

We will first try to solve the homogeneous equations by power series expan-
sion about x0. x0 may be ordinary or a regular singular point, but not an
essential singularity. For convenience only we assume x0 = 0.

Let us look for a solution of the form

y(x) = xk
∞∑

n=0

an x
n, with a0 6= 0

=
∞∑

n=0

an x
n+k

y′(x) =
∞∑

n=0

(n+ k) anx
n+k−1

y′′(x) =
∞∑

n=0

(n+ k)(n+ k − 1) an x
n+k−2

Now xP (x) =

∞∑

r=0

brx
r and x2Q(x) =

∞∑

r=0

crx
r as these are analytic at
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0, so

∞∑

n=0

(n + k)(n+ k − 1)anx
n+k−2 +

∞∑

n=0

∞∑

r=0

(n + k)anbrx
n+r+k−2

+
∞∑

n=0

∞∑

r=0

ancrx
n+r+k−2 = 0.

Collecting powers of xp+k−2

ap(p+ k)(p+ k − 1) +

p
∑

n=0

an
(
bp−n(n+ k) + cp−n

)
= 0.

For p = 0 we get the indicial equation

a0

[
k(k − 1) + b0k + c0

]
= 0.

But a0 6= 0, so we get a condition on k, which determines the power we start
off from.

This quadratic equation for k always has roots, so in the generic case with
two distinct roots we will get two solutions, one from each root. Higher ap
can be determined recursively from

[(p+ k)(p+ k − 1) + b0(p+ k) + c0] ap = −

p−1
∑

n=0

an (bp−n(n+ k) + cp−n)

provided p + k does not satisfy the indicial equation. Thus each root will
always give solutions except for the smaller of two roots differing by an
integer. We also only get one solution if the roots are equal.

Let’s consider some examples:

1. An ordinary point has b0 = 0, c0 = c1 = 0. The indicial equation
k(k−1) = 0 has solutions k = 0, 1. The equation for a1, k(k+1)a1 +
a0b1k = 0 does not determine a1 when k = 0, but is consistent. There-
fore there are solutions with arbitrary a0 and a1 (k = 0), giving the two
required solutions. As k = 0, the solution is analytic at the ordinary
point.

2. Suppose P (x) is an odd function of x and Q(x) is an even function.
Then the Parity operator ψ(x) → ψ̃(x) := ψ(−x) applied to a solution
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will give a solution. Either this is the second solution (but with the
same initial power of xk) or it is the same solution multiplied by ±1.
The first case can be reduced to the second anyway, so the solutions
will be either even or odd functions of x. As there are nonzero b’s and
c’s only for even indices, the equation for the even an’s never involve
the odd ones, and vice versa. a1 must satisfy its own indicial equation.

3. Bessel’s equation is

y′′ +
1

x
y′ +

(

1 −
n2

x2

)

y = 0

so b0 = c2 = 1, c0 = −n2, all others zero. The indicial equation
k(k−1) + k − n2 = 0 gives k2 = n2, k = ±n. Thus for integral or
half-integral n (which is what arises physically), the two roots differ by
an integer, and if we try to find the a’s corresponding to k = −n, we
may not be able to solve the equation for p = 2n. But we have derived
at least one solution with k = +n.

Fuchs’s Theorem: This method, called Frobenius’ Method, of expanding
about an ordinary or regular singular point, always gives at least one solution
as a power series expansion which converges up to the nearest singularity of
P (x), Q(x), or F (x).

1.2 Wronskian

If we have a linear n’th order ordinary differential equation,

y(n)(x) +

n−1∑

j=0

Pj(x)y
(j)(x) = 0, (where d(0)y means y) (1)

we know there ought to be n linearly independent solutions. Given n solu-
tions, we want to know if they are linearly independent, and given fewer, we
would like help finding the rest. One useful tool is the Wronskian.

First we consider n ordinary vectors ~Vj in an n-dimensional vector space,
expressed in some basis. If the matrix Mkj = (Vj)k has a nonzero determi-

nant, there is no non-zero vector aj for which
∑

jMkjaj = 0 =
(
∑

j aj
~Vj

)

k
,

and hence the vectors are linearly independent.
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Now consider the vector space of solutions of Eq. (1), and n functions
yk(x) which solve that equation. Define the Wronskian as the determinant
of the matrix of j’th derivatives, j = 0, . . . , n−1 of the n functions y,

W (x) := det
dℓ−1yk
dxℓ−1

=
∑

i1,...,in

ǫi1,...,in

n−1∏

j=0

djyij+1

dxj
.

If the Wronskian vanishes, even at one point, it means that at that point
there is a nonzero aj such that

∑

j ajyj(x) vanishes along with its first n−1

derivatives, but then, as it satisfies Eq. (1), its n’th derivative also vanishes,
and it is identically zero, so the n yj’s are not linearly independent.

If we differentiate the Wronskian, we can show dW/dx = −Pn−1(x)W (x),
and thus we can solve for W (x), Thus W satisfies a first order differential
equation with solution

W (x) = W (a) exp −

∫ x

a

Pn−1(x
′)dx′.

For a general proof see my supplemental note “Wronskian”, but we are inter-

ested in second order equations. For n = 2, W (x) =

∣
∣
∣
∣

∣
∣
∣
∣

f1 f2

f ′
1 f ′

2

∣
∣
∣
∣

∣
∣
∣
∣
= f1(x) f

′
2(x)−

f ′
1(x) f2(x). Suppose y1 and y2 are solutions of y′′ + P (x)y′ +Q(x)y = 0.

W ′ =
d

dx
(y1y

′
2 − y′1y2) = y1y

′′
2 − y′′1y2

= y1 (−Py′2 −Qy2) − y2 (−Py′1 −Qy1)

= −P (x) (y1y
′
2 − y′1y2) = −P (x)W

So, at least for n = 2, we have verified our solution for W (x).
Suppose we have a known solution y1, and we want a linearly independent

y2. Overall normalization doesn’t matter to us, so we can assume W (a) = 1,
solve for W (x), and find a first order equation

W (x) = y1y
′
2 − y′1y2 = y2

1

d

dx

y2

y1

,

so y2(x) = y1(x)

[∫ x

b

W (x′)

y2
1(x

′)
dx′

]

.

[For n > 2, if we know n− 1 solutions, noting that we know the Wronskian,
which depends on yn and only its first n−1 derivatives, we have an (n−1)’th
order differential equation for yn, which might be easier. But it is for n = 2
that we will find this most useful.]



464/511 Lecture I Last Latexed: November 2, 2016 at 16:08 7

1.3 Solutions of Bessel’s Equation

Bessel’s equation is

y′′ +
1

x
y′ +

(

1 −
n2

x2

)

y = 0.

So P (x) = 1/x, Q(x) = 1− n2

x2 , so b0 = 1, c0 = −n2, c2 = 1, all others vanish.
The indicial equation is k2 = n2, so Frobenius’ method gives us a solution
from k = n. Successive a’s are given by

[
(n+ p)2 − n2

]
ap = −

p−1∑

j=0

aj
[
δp−j,0(j + n) + δp,j+2 − n2δp,j

]
= −ap−2,

or

ap =
−1

p(p+ 2n)
ap−2, so ap = 0 for odd p,

a2m =
(−1)m (2n)!!a0

(2m)!!(2m+ 2n)!!
=

(−1)m n!a0

22mm! (m+ n)!
.

Let a0 = 1/(2nn!) in order to get Bessel’s function normalized by standard
convention. Then

a2m =
(−1)m

22m+nm! (n +m)!

and y1(x) = Jn(x) :=

∞∑

m=0

(−1)m

m! (n +m)!

(x

2

)2m+n

.

This is called the Bessel function of the first kind.
Now let us turn to finding the second solution. As P = 1/x, W (x) =

exp−
∫ x

P (x′)dx′ = e− lnx = 1/x.

y2(x) = Jn(x)

∫ x 1

x′J2
n(x

′)
dx′.

Writing the integrand in a Laurent expansion, the most singular term at
x = 0 comes from Jn ∼ 1

n! 2nx
n, so

y2(x) ∼ n! 2nxn
∫ x

(x′)−1−2ndx′ =
2n−1

(n− 1)!
x−n (1 + O(x)) n 6= 0.

At first sight it looks like this is just what we would get from Frobenius,
using the root k = −n, and indeed for n not integral that is correct. But
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for integer n the expansion of 1/x′J2
n(x

′) will in general have a term a−1x
−1,

which on integration gives a lnx rather than a constant, multiplying Jn.
For n = 0, J0 ∼ 1 − x2

4
+ x4

64
+ · · · ,

y2 = J0(x)

∫ x 1

t

(

1 −
t2

4
+
t4

64
+ · · ·

)−2

︸ ︷︷ ︸

1 +
t2

2
+

5

32
t4 + · · ·

dt

= J0(x)

(

ln x+
x2

4
+

5

128
x4 + · · ·

)

.

The irregular solutions to the Bessel equation are called Neumann functions,
Nν(x) or Yν(x). As the Bessel equation arises from the Helmholtz equation
in cylindrical polar coordinates, circular wave guides will have modes with
radial dependence given by Jn(αr), or, for coaxial ones, where the solution
needn’t be regular at the origin, by a superposition of J and N .

1.4 Sturm-Liouville, Self-Adjoint differential equations

Consider a differential operator L such as

Lu(x) = p0(x)
d2u

dx2
+ p1(x)

du

dx
+ p2(x)u(x) (2)

which is of the same type we considered before, but with p0 not divided out.
We consider L as a map on the space of functions defined on an interval

[a, b] (a = −∞ or b = +∞ is okay), where (a, b) contains no singular points,
and within which p′0, p

′′
0, p

′
1, and p2 are continuous.

If we defined an inner product (v, u) =
∫ b

a
v∗(x)u(x)dx, then the hermitian

conjugate of L would be defined by (v, L̄u) = (u,Lv)∗, or
∫ b

a
v∗(x)L̄u(x)dx =

∫ b

a
u(x)Lv∗(x)dx, where I have assumed the p’s are real (for real x). So

∫ b

a

v∗(x)L̄u(x)dx =

∫ b

a

up0
d2

dx2
v∗dx+

∫ b

a

up1
d

dx
v∗dx+

∫ b

a

up2v
∗dx.

Integrating by parts and throwing away the end point contributions,

∫ b

a

v∗(x)L̄u(x)dx =

∫ b

a

v∗
[
d2

dx2
(p0u) −

d

dx
(p1u) + p2u

]

,
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so

L̄u =
d2

dx2
(p0u) −

d

dx
(p1u) + p2u (3)

is a good definition of an adjoint operator. Take this as a motivation rather
than a proof, as we have ignored the surface terms (i.e. end point contribu-
tions.)

L is a self-adjoint operator if L = L̄. But expanding (3),

L̄u =

(
d2

dx2
p0

)

u+ 2

(
d

dx
p0

)
du

dx
+ p0

d2u

dx2
−

(
d

dx
p1

)

u− p1
du

dx
+ p2u,

so equality (for all u) with (2) requires

2
dp0

dx
− p1 = p1,

d2p0

dx2
−
dp1

dx
+ p2 = p2,

or
dp0

dx
= p1, from which both follow.

If L is self-adjoint, Lu =
d

dx

[

p0(x)
du

dx

]

+ p2(x)u(x). Then we call p = p0

and q = p2.
Clearly not every 2nd order differential operator is self-adjoint, but each

equation can be made so by finding a suitable function to multiply it by. If
y′′ +P (x)y′ +Q(x) = 0, then Ly = p0y

′′ + p1y
′ + p2 = 0 with p1 = Pp0, p2 =

Qp0 and self-adjointness of L requires only
dp0

dx
= Pp0, or ln p0 =

∫
P (x)dx.

In our treatment of separation of variables, we got relations of the form
Lu(x) + λw(x)u(x), where λ was an unknown separation constant and w(x)
was a known function necessary in order to get things to separate. For
example, for Helmholtz in spherical coordinates, for R(r) we have L = r2 d2

dr2
+

2r d
dr

− ℓ(ℓ+1) and w(r) = r2, with λ = k2. Multiplying by a function to
make L self-adjoint will only change the form of w(x), so we may as well
consider only self-adjoint L. We will assume w(x) > 0 on (a, b) for reasons
to emerge.

Let us start with a very simple example. Take the equation Φ satisfies in
axially or spherically symmetric problems:

d2Φ

dφ2
+m2Φ = 0.
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Here p = 1, q = 0, w = 1, λ = m2, and a = 0, b = 2π. (φ → x, Φ → y or
u or v). There are always some kind of boundary conditions to be imposed.
Here they are periodicity. If u = Φ is an acceptible solution, it is periodic
u(0) = u(2π) and u′(0) = u′(2π).

We know the solutions are ∝ cosmx or sinmx. It is the boundary con-
dition which forces m to be an integer. We could also consider eimφ, but we
would still find m quantized to be an integer.

Let us define φm(x) = 1√
2π
eimx. Then

∫ 2π

0

φ∗
m(x)φn(x) dx =

1

2π

∫ 2π

0

ei(n−m)x dx = δm,n.

Thus the φ’s are orthonormal basis vectors of an infinite dimensional vector
space.

How does this generalize to the general case

(L + λw) y =
d

dx

(

p
dy

dx

)

+ q(x)y(x) + λw(x)y(x) ?

a) the boundary conditions:
If L is to be considered Hermitian, we must have (v,Lu) = (u,Lv)∗

(with p, q real), or

∫ b

a

{

v∗(x)
d

dx

(

p(x)
du

dx

)

+ v∗(x)q(x)u(x)

}

dx

=

∫ b

a

(

u
d

dx

(

p(x)
dv∗

dx

)

+ u(x)q(x)v∗(x)

)

dx

The qv∗u terms cancel. Integrating the first expression by parts,

v∗(x)p(x)
du

dx

∣
∣
∣
∣

b

a

−

∫ b

a

dv∗

dx
p(x)

du

dx
= u(x)p(x)

dv∗

dx

∣
∣
∣
∣

b

a

−

∫ b

a

du

dx
p(x)

dv∗

dx
.

The
∫

terms cancel, so L is hermitean on these two functions if

v∗(x)p(x)
du

dx

∣
∣
∣
∣

b

a

= u(x)p(x)
dv∗

dx

∣
∣
∣
∣

b

a

.

This is a rather nasty condition to impose, for each umust satisfy it with each
allowed function v in the space on which we can consider L to be hermitean.
Here are some examples of how it is imposed.
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(a) The case of Φ: All functions in the space are periodic, so u∗(b) = u∗(a)

and
du

dx
(a) =

du

dx
(b), and the same for v. As p = 1 here, both sides

vanish.

(b) The harmonic oscillator problem in quantum mechanics, which gives the
Hermite polynomials. p = e−x

2

, w = e−x
2

, a = −∞, b = +∞. u and v
are required to vanish at infinity.

(c) The Legendre equation (for general m, for x ∈ [−1, 1])

(
1 − x2

) d2y

dx2
− 2x

dy

dx
︸ ︷︷ ︸

d

dx

(
1 − x2

) dy

dx
so p = 1 − x2

+

[

ℓ(ℓ+ 1) −
m2

1 − x2

]

y = 0.

The limits θ = 0, π correspond for x = cos θ to −1 and +1, and y is
required to remain finite there, with finite derivative, even though ±1
are regular singular points. As p→ 0 at a and b, finiteness of du/dx is
all that is needed.

(d) Bessel’s equation y′′+
1

x
y′+

(

1 −
n2

x2

)

y = 0. Multiply by x,
d

dx

(

x
dy

dx

)

+
(

x−
n2

x

)

y = 0, so p = x. Zero and ∞ are the singular points, so they

are the natural a and b.

The boundary conditions are finiteness at the origin (where p→ 0) and
vanishing sufficiently fast at infinity. (to be investigated later).

(e) Dirichlet or Neumann boundary conditions. If we require all solutions to
vanish at the boundaries (Dirichlet) or to have their derivatives vanish
at the boundaries (Neumann), then both sides vanish.

We have been discussing u as vectors and L as an operator, a kind of
infinite matrix by analogy. The equation Lu(x) = −λw(x)u(x) is said in the
book to have eigenfunctions u and eigenvalues λ. But an eigenvalue equation
Mv = λv does not have a −w(x) in it.

More accurately, we can say that u is an eigenvector of the differential
operator O = − 1

w(x)
L. Then our equation is Ou = λu, so u is really

an eigenvector with eigenvalue λ. But O is not hermitian according to the
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definition of the inner product we used earlier, (v, u) =
∫
v∗(x)u(x) dx. We

may instead define a different measure of distance on our space of functions,

〈v, u〉 :=

∫ b

a

w(x)v∗(x)u(x) dx.

The w measure just cancels the 1/w in O, so with respect to this new metric,
O is hermitian. A measure needs to be positive, which is why we imposed
that constraint of w(x).

Now to remind you of some linear algebra1

(a) Any hermitian matrix O can be written O = UDU−1 with a diagonal
Dij = λiδij and U a unitary matrix.

(b) The set of vectors
∑

i eiUij = φj, for each j, is a complete set of eigen-
vectors (with eigenvalues λj). That is, any vector V =

∑
ajφj.

(c) The λ’s are real, and the φ’s corresponding to different λ’s are orthogonal.
(In fact, all the φj ’s I have defined are orthonormal.)

Now let us see how this applies to solutions

Lui + λiw ui = 0.

Let uj be another solution with λj. Then u∗jLui + λiwu
∗
jui = 0. This is also

true with i↔ j, and the complex conjugate taken. uiLu
∗
j + λ∗jwuiu

∗
j = 0.

But we showed from the hermiticity of L that

(uj,Lui) =

∫

u∗jLui = (ui,Luj)
∗ =

∫

uiLu
∗
j

so
(
λi − λ∗j

)
∫

u∗j(x)ui(x)w(x)ds = 0.

If i = j the integrand |u2
i |w(x) is positive so the integral cannot vanish,

and λi = λ∗i , or λi is real. If λi 6= λj, the integral must vanish, and 〈uj, ui〉 =
0, the u’s are orthogonal with measure w. If λi = λj but ui and uj are
linearly independent, they are not necessarily orthogonal, but span a two

1Of course you probably only saw these facts for finite-dimensional algebras. Hopefully

they will apply to our infinite dimensional ones as well. We discuss completeness below.
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dimensional space with some basis which can be chosen orthonormal with
respect to w(x).

What about completeness? Can any function F (x) be written as
∑∞

n=0 anφn,
where φn is a set of eigenfunctions? We say that φn is complete if there is a
sequence an such that

lim
m→∞

∫ b

a

∣
∣
∣
∣
∣
F (x) −

m∑

n=0

anφn(x)

∣
∣
∣
∣
∣

2

w(x) = 0.

We take φn to be an orthonormal set (even if there are degenerate eigenval-
ues). Then if F =

∑∞
n=0 anφn, an =

∫
F (x)φ∗

n(x)w(x) dx. If we define the
an’s this way, even if we don’t assume F is given by

∑∞
n=0 anφn, then

0 ≤

∫ b

a

∣
∣
∣
∣
∣
F (x) −

∞∑

n=0

anφn

∣
∣
∣
∣
∣

2

w(x) dx =

∫ b

a

|F (x)|2w(x) dx

−
∞∑

n=0

an

∫

F ∗φnw
︸ ︷︷ ︸

a∗n

−
∞∑

n=0

a∗n

∫

φ∗
nFw

︸ ︷︷ ︸

an

+
∞∑

m,n=0

ana
∗
m

∫

φ∗
nφmw

︸ ︷︷ ︸

δm,n

=

∫ b

a

|F (x)|2w(x)dx−
∑

n

a∗nan ≥ 0 Bessel’s inequality

If the series
∑

|an|
2, which is monotone increasing, reaches

∫
F 2w, which

bounds it, then F =
∑
anφn.

Theorem without proof: φn is complete. And can be chosen real.

The δ function:
Let K(x, t) =

∑

m φm(x)φ∗
m(t). Then if F (t) =

∑
anφn(t),

∫

w(t)K(x, t)F (t)dt =
∑

mn

anφm(x)

∫

φ∗
m(t)φn(t)w(t)dt

︸ ︷︷ ︸

δm,n

=
∑

anφn(x) = F (x),

so w(t)K(x, t) is the Dirac delta function δ(x− t)
Finally a Green’s function, and the solution of the inhomogeneous equa-

tion
Lψ(x) + λw(x)ψ(x) = −ρ(x).
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Let G(x, y) =
∑

n

φn(x)φ
∗
n(y)

λ− λn
. Applying Lx + λw(x) to G(x, y) (y is fixed)

(Lx + λw(x))G(x, y) =
∑

n

Lxφn(x) + λw(x)φn(x)

λn − λ
φ∗
n(y)

=
∑

n

−λnw(x)φn(x) + λw(x)φn(x)

λn − λ
φ∗
n(y)

= −w(x)
∑

n

φn(x)φ
∗
n(y) = −δ(x− y).

Thus V (x) =
∫
G(x, y)ρ(y) dy satisfies

LV (x) + λw(x)V (x) = −ρ(x)

and we have found the inhomogeneous solution V .


