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Physics 464/511 Lecture E Fall 2016
Last time we introduced manifolds as a way to describe spaces that might

be curved rather than Euclidean, emphasizing making statements about them
which are true regardless of how one parameterizes the space. The abstract
description of this method involves manifolds, atlases, tangent and cotangent
bundles, and seems very abstract, but it mostly boils down to recognizing
that covariant objects transform in definite ways when one changes from
one coordinate description to another, and that the physical properties are
described by various tensors1. Among these tensors, one particularly useful
set are the n-forms. Today we will learn how to integrate them.

1 Integration

We introduced the notion of a 1-form as the change in a scalar function
under an infinitesimal displacement. So it is immediately obvious that if we
integrate the 1-form df along a path C = P(λ) parameterized by λ ∈ [a, b],
we have

f(P2) − f(P1) =

∫

C

df =

∫

C

∂f

∂qj
dqj =

∫ b

a

∂f

∂qj

dqj

dλ
dλ.

This is basically the fundamental theorem of calculus extended from the
real line to arbitrary smooth curves. But this definition is a natural for the
integration of a general 1-form along a path in a chart-independent way. If
ω = ωj dqj,

∫

C

ω :=

∫ b

a

ωj(q)
dqj

dλ
dλ,

and this is independent of chart, and also of parameterization of the path.

But notice that if we integrate a general ω

along a different path C ′ from P1 to P2, we are
not guaranteed to get the same answer. In fact,
∫

C
ω−

∫

C′
ω =

∮

Γ
ω, the integral around the closed

path. In cartesian coordinates, if we associate ω

with ~V = ωj ê
j ,

∫

Γ

ω =

∫

Γ

ωjdxj =

∮

~V · d~ℓ =

∫

S

(~∇× ~V ) · d~σ,

Γ
C

C’

2 2

11

1In quantum mechanics, we also have spinors. We probably won’t get to that.
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where we used Stokes’ theorem to get the last expression. Here d~σ is an
element of area of the surface S bounded by the closed path Γ.

What is d~σ? If we consider the surface embedded in Euclidean space to
be described by parameters u and v, integrating over the surface

∫

dudv is

summing over little parallelograms with sides d~x =
∂~x

∂u
du and d~x ′ =

∂~x

∂v
dv,

with area and normal given by

d~σ = d~x × d~x ′ =
∂xj

∂u

∂xk

∂v
ǫjkℓêℓ.

Thus

∫

S

(~∇× ~V ) · d~σ =

(

ǫℓmn

∂V n

∂xm

) (

ǫℓjk

∂xj

∂u

∂xk

∂v
dudv

)

=

∫

S

(

∂V k

∂xj
− ∂V j

∂xk

)

∂xj

∂u

∂xk

∂v
dudv

Notice that the 2-form ω(2) associated with the vector ~∇× ~V is

1

2
ǫijk(~∇× ~V )i dxj × dxk =

1

2
ǫijkǫimn

∂V n

∂xm
dxj × dxk.

So we define in general the integral of a two
form ω(2) = 1

2
Bjkdxj ∧ dxk over a surface to

be
∫

S

ω
(2) =

∫

Bjk(x(u, v))
∂xj

∂u

∂xk

∂v
dudv.

u

v

We see that the integral
∫

S
ω(2) =

∫

Γ
ω, where ω(2) = dω.

Finally, consider again an arbitrary vector field in cartesian coordinates
in Euclidean space, but this time associate it with a 2-form

~V = viei ⇔ ω
(2) =

1

2
Bjk dxj ∧ dxk, with Bjk = ǫijkv

i

Let us integrate this over a closed two-dimensional surface S. Gauss assures
us that

∫

S
~V · d~σ =

∫

V
~∇ · ~V . Now we saw last time that if ~V ⇔ ω(2),

dω(2) = (~∇ · ~V )Ω, where Ω = 1
6
ǫℓjkdxℓ ∧ dxj ∧ dxk. So we see that we should

in general define the integral of a 3-form ω(3) = 1
6
Bijk dxi ∧ dxj ∧ dxk over
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a volume by

∫

V

ω
(3) =

∫

Bijk (x(u, v, w))
∂xi

∂u

∂xj

∂v

∂xk

∂w
dudvdw. And we see

that Gauss’ law is now
∫

S

ω
(2) =

∫

V

dω
(2).

Note that in this formula S is the boundary of the set V , and in Stokes’
law

∫

S
dω =

∫

Γ
ω, Γ is the boundary of S, and even in f(P2)−f(P1) =

∫

C
df

the left hand side can be viewed as the “integral” over the points P2 and
P1, which is the boundary of the curve C, of the 0-form f , with suitable
definitions of orientation. This sign issue is not new, because in even in
Stokes’ law we need to define the direction of

∫

Γ
consistently with that of

S. All of what we have shown is incorporated into the more sophisticated
version of Stokes’ theorem: If R is a closed p-dimensional region of a manifold
M with boundary ∂R and if ω is a smooth (p−1)-form defined on R

∫

R

dω =

∫

∂R

ω.

We have derived these versions of Stokes’ theorem for Euclidean space in
cartesian coordinates, but the p-forms are chart-independent, and the spaces
over which they are integrated are subspaces of M, so these hold regardless
of the coordinates used. That they also hold for general differentiable man-
ifolds regardless of curvature is less apparent, but is nonetheless true. But
I do need to point out that the definition of the 3-form Ω is not coordinate
independent, and needs to be fixed. Let Ω be the (hyper)-volume n-form
on an n-dimensional Euclidean manifold given in cartesian coordinates by
Ω = dx1 ∧ dx2 ∧ . . . ∧ dxn. Because of the antisymmetry of the wedge prod-
uct, this is also Ω = 1

n!

∑

P∈Sn
ǫµ1,µ2,...,µn

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn , where the
n index ǫ is defined by ǫµ1,µ2,...,µn

= (−1)P , where P is the permutation that
takes (1, 2, . . . , n) into µ1, µ2, . . . , µn and (−1)P means the sign of P , that is,
−1 if P consists of an odd number of transpositions, +1 if an even number.
But to be coordinate independent2, for Ω = 1

n!
εµ1,µ2,...,µn

dqµ1∧dqµ2∧. . .∧dqµn ,

2Note the distinction between ε and ǫ. There is no standard here — Wikipedia defines
the Levi-Civita symbol to be the numerical one with values ±1 and 0, and calls it ε, as
does Vaughn, but calls the covariant ones E for what I call ε. Misner, Thorne and Wheeler
use ε as I do, but [µνρσ] for the numerical one. Weinberg’s “Gravitation and Cosmology”
has ε0123 = 1 with ε0123 = −g, thus covariant but differently normalized.
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we need ε to transform covariantly in all its indices, which means3

εµ1,µ2,...,µn
= ǫν1,ν2,...,νn

n
∏

j=1

∂xνj

∂qµj
= ǫµ1,µ2,...,µn

det
∂xj

∂qk
.

But recall that in general coordinates qj the metric tensor is gjk =
∂xℓ

∂qj

∂xℓ

∂qk

so g := det g·· =

(

det
∂x

∂q

)2

, and we have4

εµ1,µ2,...,µn
=

√
g ǫµ1,µ2,...,µn

.

For pseudo-Riemannian spaces the metric may be negative, so then we use√−g instead, with εµ1,µ2,...,µn
= ǫµ1,µ2,...,µn

for the Minkowski coordinates.

2 The Hodge Dual

We have seen that in three dimensional Euclidean space we have a natural
association with a vector field ~V (x) = vi(x)êi and a 1-form ω(x) = ωi(x)dxi,
with vi = ωi, and also with a 2-form ω

(2)(x) = 1
2
Bjk(x) dxj ∧ dxk, with

Bjk = ǫjki v
i. This gives us a kind of duality between 1-forms and 2-forms.

More generally, in cartesian coordinates for n-dimensional Euclidean space,
we define the Hodge * acting on a p-form to be an n − p form

∗
(

dxi1 ∧ dxi2 ∧ · · · ∧ dxip
)

=
1

(n − p)!
ǫi1,i2,...,ip,ip+1,...,indxip+1∧dxip+2∧· · ·∧dxin .

In non-cartesian coordinates we need to distinguish co- and contra-variant
indices, which means we need to use the covariant ε rather than ǫ, and we
need to raise p of the indices, so the covariant coefficients of the two forms
are related by

∗
(

ω
(p)

)

i1,i2,...in−p
=

1

(n − p)!
ε

j1,j2,...,jp

i1,i2,...,in−p

(

ω
(n)

)

j1,j2,...jp
. (1)

3A discussion of ǫ with n indices and its use in defining determinants is given in
epsndeuc.pdf and determinant.pdf, available on the supplementary notes page.

4Vaughn gives the name ρ(x) to
√

g, as it is the density of space, if you like, as the
volume integral is

∫

ρ(q)dq1 . . . dqn.
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The dual of the dual is almost the original p-form, except there is a sign,

∗ ∗ ω
(p) = (−1)p(n−p)s ω

(p),

where s is the signature of the metric tensor, +1 for Riemannian space but
−1 for Minkowski space. Thus the two forms associated with ~V are dual to
each other in cartesian coordinates.

If we go to a general coordinate system instead of a cartesian one, coef-
ficients of 1-forms and 2-forms transform differently. Note, in fact, that we
had awkwardness in our vector ↔ 1-form identification vi = ωi, relating a
covariant index to a contravariant one. But the Hodge dual permits us to
give the relation covariantly.

3 The Laplacian

Many of the fields we consider in physics have partial differential equations
involving the Laplacian. Acting on a scalar field, ∇2λ = ~∇ · (~∇λ). We

have seen that the gradient ~∇λ is associated with the 1-form ω =
∂λ

∂qj
dqj,

which is also associated with its 2-form dual, ω
(2) =

1

2
εj

kℓ

∂λ

∂qj
dqk ∧ dqℓ =

1

2
gjmεmkℓ

∂λ

∂qj
dqk ∧ dqℓ =

1

2
gjm√g ǫmkℓ

∂λ

∂qj
dqk ∧ dqℓ. But we know that the

exterior derivative of a 2-form is associated with the divergence, so

dω
(2) =

1

2
ǫmkℓ

∂

∂qi

(

gjm√g
∂λ

∂qj

)

dqi ∧ dqk ∧ dqℓ

=
1
√

g

∂

∂qi

(

√
g gij ∂λ

∂qj

)

Ω,

where Ω =
√

g dq1∧dq2∧dq3, the volume 3-form we considered earlier. Thus
we have

∇2λ = ~∇ · ~∇λ =
1
√

g

∂

∂qi

(

√
g gij ∂λ

∂qj

)

.

4 Some Things Postponed

We have developed the fundamentals of a Riemannian manifold and of differ-
ential forms, laying the groundwork that we would want to go on to discuss
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General Relativity. The next step in that direction would be to discuss par-
allel transport and covariant derivatives, and then curvature. This is very
interesting stuff, and useful in considering gauge field theories as well as
general relativity, and maybe if we have time later, we will come back to
this.

If you are impatient, there are lots of books on general relativity that you
can persue on your own, though it is not easy going. I learned it mostly from
Misner Thorne and Wheeler, with Weinberg’s “Gravitation and Cosmology”
for some topics. I tried teaching it from Wald, but that was rough going. A
book by Carroll is available free on the web arxiv.org/pdf/gr-qc/9712019

and has a good bibliography of other books on pages v-vi. We have a graduate
course, 617: General Theory of Relativity, scheduled to be taught next spring
(2017). But for now, we will turn to more mundane uses of these concepts.

5 Orthogonal Coordinates

We are accustomed to giving our vector components using orthonormal basis
vectors, but we have recently been describing them on our manifold using
1-forms with basis elements dqi, with a scalar product g(u, v) = giju

ivj . In
general these are neither orthogonal nor normalized. As g is a positive definite
symmetric matrix, we can always find unit vectors5 ẽi with g(ẽi, ẽj) = δij ,
and dxi dual to ẽi. This is possible independently at every point, but with
no guarantee that dxi can be extended to a finite region as coordinates. In
fact, that is only possible in a flat space, giving us cartesian coordinates, and
even there, these may not be the most helpful choice.

What are helpful choices are orthogonal coordinates. In general, for
each of the coordinates qj and each point in the manifold P0, the equa-
tion qj(P) = qj(P0) determines a surface (hypersurface of dimension n−1)
containing the point P0, at least in a neighborhood of P0. Suppose it is pos-
sible to describe our space, or at least a chart covering a part U of our space,
with n coordinates qj such that the hypersurfaces corresponding to the n
coordinates are orthogonal. That means there are no off-diagonal elements,

5If we are in a pseudo- Riemannian (e.g. Minkowski) space rather than Riemannian,
replace δij with the flat-space metric ηµν .



464/511 Lecture E Last Latexed: September 26, 2016 at 13:51 7

so6

g =
∑

gjk dqj ⊗ dqk =
n

∑

k=1

(hk dqk)2

We have used the fact that the Riemannian metric is positive definite to set
the diagonalized matrix elements to h2

k. For a pseudo-Riemannian space the
signature of g is fixed to that of η, so again hj is real. Note that the

√
g (or√−g) in the volume n-form is now

∏

k hk.
[Note: at this point we will temporarily turn off the summation convention
— no sums unless explicitly indicated.]
[Also, we are now going to consider three-dimensional Euclidean space. Thus
gij = h2

i δij , gij = h−2
i δij, and

√
g = h1h2h3.]

Thus the 3 dqj’s determine orthogonal vectors at the point P, and we can
define unit vectors êj corresponding to hjdqj. The gradient of a scalar f is

~∇f =
∑

j

h−1
j

∂f

∂qj
êj .

Consider a vector ~V =
∑

j vj ê
j which corresponds to the 1-form ω

(1)
V =

∑

j vjhjdqj and its dual 2-form ω
(2)
V = ∗ω(1)

V = 1
2

∑

jkℓ εj
kℓvjhjdqk∧dqℓ. Note

εj
kℓ = gjjεjkℓ =

h1h2h3

h2
j

ǫjkℓ. Now ω
(1)
V and ω

(2)
V have exterior derivatives

dω
(1)
V =

∑

jk

∂vjhj

∂qk
dqk ∧ dqj ⇔ 1

2

∑

jkℓ

εj
kℓ(

~∇× ~V )jhjdqk ∧ dqℓ

=
1

2

∑

jkℓ

h1h2h3

h2
j

ǫjkℓ(~∇× ~V )jhj dqk ∧ dqℓ

and dω
(2)
V =

1

2

∑

ijkℓ

∂

∂qi

(

h1h2h3

h2
j

ǫjkℓ vjhj

)

dqi ∧ dqk ∧ dqℓ

⇔ ~∇ · ~V h1h2h3 ǫikℓ dqi ∧ dqk ∧ dqℓ

Thus ~∇× ~V =
∑

ijk

ǫijk

1

hihj

∂(hjvj)

∂qi
êk

and ~∇ · ~V =
1

h1h2h3

∑

j

∂

∂qj

(

h1h2h3

hj

vj

)

.

6For a Riemannian space. If pseudo-Riemannian, we need
∑

jk ηjkhjhkdqjdqk instead.
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Finally, the laplacian of a scalar is

∇2f =
1

h1h2h3

∑

i

∂

∂qi

(

h1h2h3

h2
i

∂f

∂qi

)

.

6 Forms in Special Relativity

Even if we deal simply with flat Minkowski space in cartesian coordinates,
the language of n-forms is useful. Let us review four-dimensional language
of special relativity, and Maxwell’s equations in free space.

We describe space-time positions with a 4-vector (really not a vector)
xµ, µ = 0, 1, 2, 3 with x0 = ct, and define the invariant (dτ)2 = (dx0)2 −
∑3

j=1(dxj)2 = ηµνdxµdxν , where the Minkowski metric tensor7 η00 = 1, ηij =

−δij , η0j = ηj0 = 0. The three dimension variables are ~x = xj , but for the
momentum ~p = pj = −pj . Scalar products W · V =

∑

µ W µVµ = W 0V 0 −
~W · ~V . The zeroth component of the momentum is p0 = p0 = E/c, where E

is the energy. Thus for a free particle of mass m, p2 =

(

E

c

)2

− ~p 2 = m2c2,

independent of the reference frame.
Maxwell’s equations in free space (where ~D = ǫ0

~E and ~H = ~B/µ0, and
ǫ0µ0 = c−2)

~∇ · ~E =
ρ

ǫ0

~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − 1

c2

∂ ~E

∂t
= µ0

~J

In terms of ~E and ~B the Lorentz transformation properties are somewhat
involved, but all becomes clear if we combine things into covariant objects.
Define the field strength tensor

F µν =









0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0









,

or better yet the 2-form F = 1
2
Fµν dxµ ∧ dxν . Also define a 4-vector Jµ =

(ρ/ǫ0, ~J). Let’s ask what the exterior derivative of F is:

dF =
1

2

∂Fµν

∂xρ
dxρ ∧ dxµ ∧ dxν .

7The choice of overall sign is immaterial, but ours is sometimes called the west-coast
convention. Note that this is not a 2-form, but a symmetric tensor in T ∗ ⊗ T ∗.
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The coefficient of dx1 ∧ dx2 ∧ dx3 in this expression is
1

2
ǫjkℓ

∂Fkℓ

∂xj
, and Fkℓ =

−ǫkℓmBm, so this component is −1

2
ǫjkℓǫkℓm

∂Bm

∂xj
= −~∇ · ~B = 0. The coeffi-

cient of dx0 ∧dxj ∧dxk is
1

c

∂Fjk

∂t
+

∂F0j

∂xk
+

∂Fk0

∂xj
= −1

c
ǫjkℓḂℓ +

∂Ej

∂xk
− ∂Ek

∂xj
=

−ǫjkℓ

(

1

c
Ḃℓ + (~∇× ~E)ℓ

)

= 0. So two of Maxwell’s equations, the ones with-

out sources, tell us that that dF = 0, and therefore F is a closed 2-form.
We have seen that any exact form is closed. But it is also true8 that if a
form is closed through a contractible region, it is exact. So as F is closed
everywhere in space-time, it must be exact, that is, it must be the exterior
derivative of a 1-form A = Aµdxµ. If we identify A0 = Φ, the electrostatic

potential, and Aj = ~A, we have dA =
∂Aµ

∂xν
dxν ∧ dxµ = F =

1

2
Fµνdxµ ∧ dxν ,

so Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
. In terms of three-dimensional notation, Ek = Fk0 =

−1

c
Ȧk −

∂Φ

∂xk
or ~E = −1

c

∂ ~A

∂t
− ~∇Φ, as usual, and Bk = −1

2
ǫkijFij = ~∇× ~A,

again as it should be.
What about the other two Maxwell equations? Consider the Hodge dual

of F , F := ∗F = 1
2
Fρσdxρ ∧ dxσ, with

Fρσ =
1

2
εµν

ρσFµν =









0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0









.

Notice this is just what you get by interchanging
~B with −~E, so the exterior derivative components

are ~∇· ~E and ǫjkℓ

(

1

c

∂Eℓ

∂t
+ (~∇× ~B)ℓ

)

, or 4πρ and

4π

c
~J , which is to say d ∗ F = ∗J . So we have

rephrased the tee shirt:

dF = 0

d ∗ F = ∗J

Much more elegant!

8Poincaré lemma. Contractible means that the form is defined (and closed) in a region
which can be continuously contracted within the itself to a point, such as a ball but not a
donut.


