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Physics 464/511 Lecture C Fall, 2016

In the last lecture we introduced the basic differential operations for vector
calculus, divergence, curl, and laplacian, in terms of their expressions in
cartesian coordinates. We also saw that a lot of relations could be written
as vector statements without reference to particular coordinate systems. For
actual calculations, especially in situations in which there is a symmetry,
such as spherical symmetry, which are not well described by rectangular
coordinates, it is useful to use other, non-cartesian coordinates to describe the
same three dimensional Euclidean space. Thus the next step will be to discuss
curvilinear coordinate systems and express the differential operators in terms
of these. But before we do that, we should review both the machinery and
the concepts of vector spaces.

1 More on Vector Space

In Lecture B we gave a formal definition of vector space over a field F , but
considered only vectors expressed in terms of coefficients ∈ F multiplying
a fixed set of vectors ei, i = 1, . . .D. Given a set of D vectors, the space
of all linear combinations of them (over the field F ) is a D dimensional
vector space, providing that there is not an alternate set of fewer than D
basis vectors which would suffice to span the space. Thus to be a basis the
vectors ej must be linearly independent, which means

∑D

j=1
αjej = 0 only if

all αj = 0. Otherwise we could solve for one of the ej in terms of the others,
and use just the other D − 1 basis vectors to express any vector.

The set of basis vectors is not unique, as for example a new set could be
obtained by rotating the old set, but the number of basis vectors is unique, as
will be shown below. If we have two sets of basis vectors, {ej} and {e′j}, any
vector in the space can be expressed as linear combinations in terms of either
set, ~V =

∑

j vjej =
∑

k v
′

ke
′

k. In particular, each of the primed set can be
expressed in terms of the unprimed, e′i =

∑

j Mijej , with Mij ∈ F , and vice-
versa, ej =

∑

k Njke
′

k, with Njk ∈ F . As ej =
∑

k Njke
′

k =
∑

kℓNjkMkℓeℓ,
and as the {ej} are linearly independent, this requires

∑

k NjkMkℓ = δjℓ,
where the Knonecker delta function δjk = 1 if j = k and = 0 otherwise.

M and N are matrices with entries in F . If there are m ek’s and n e′k’s,
M is a n×m matrix and N is an m× n matrix1. The multiplication of two

1These are not multiplications and are not equal, they represent the numbers of choices
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matrices is defined only if the second dimension of the first is the same as
the first dimension of the second: if A is an m× n matrix and B is a n× p
matrix,

(A · B)ij =
n

∑

k=1

AikBkj, for i = 1, . . . , m, j = 1, . . . , p

A · B is an n× p matrix.

A few words about indices2:

[These may seem trivial, but I have seen many graduate students mess
up calculations because they are careless with their use of indices.]

In an equation, there may be free indices and dummy indices. Free indices
can take on any specific value within the appropriate limits, but it is the same
value whereever it occurs in the equation. Dummy indices are summed over,
and have no intrinsic meaning. So in

e′i =
∑

j

Mijej =
∑

k

Mikek

the j can be replaced by any other index which does not appear else-

where in the equation. (or in the same term, more accurately, in the
scope of the summation). But the free index i cannot be replaced within a
term, that is, in general

∑

j

Mijej 6=
∑

j

Mkjej .

This is all trivial, but note that if you want the square a primed basis
vector and write (e′i)

2 =
∑

j Mijej · Mijej, you have made a mistake. The
correct expression is

(e′i)
2 =

∑

j,k

MijMikej · ek.

[Actually this is a bad example, as we might well have ej · ek = δjk.]

Linear Transformations
A linear transformation T from a vector space V into another W over the

same field (T : V → W ) must satisfy

of the first and second index respectively.
2A more extensive appeal for correct use of indices is available at

http://www.physics.rutgers.edu/∼shapiro/507/lects/indices.pdf.
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• T (~v1 + ~v2) = T (~v1) + T (~v2)

• T (α~v1) = αT (~v1)

for all ~v1 ∈ V , ~v2 ∈ V and α ∈ F . V is called the domain of T .
These properties of linear transformations means they respect the vector

space operations, or vector space structure. More generally, a mapping of
one space V with an algebraic structure into another space W with the
same structure, preserving the structure, is called a homomorphism. The
structure here is vector space, but the concept of homomorphism also applies
to rings, fields, and groups3.

As any vector ~v ∈ V can be written ~v =
∑

viei, and any vector in W ,
including T (~v), can be written as a sum of coefficients times basis vectors e′j
of W , we can write ~w = T (~v) =

∑

Wje
′

j . In particular, each T (ei) can be so
written, with coefficients in F we will call4 Tki, so T (ei) =

∑

k Tkie
′

k. But

T (~v) =
∑

i

vi T (ei) =
∑

ik

vi Tki e
′

k =
∑

k

Wke
′

k

so the coefficients of ~w, Wk =
∑

i Tkivi, because the e′k are linearly inde-
pendent. So the action of a linear transformation from a vector space of
dimension m into a vector space of dimension n is specified by a n × m
matrix with elements in F , written as

T =







T11 T12 . . . T1m

...
...

Tn1 Tn2 . . . Tnm






.

If S is a subset of points in V , T (S) is the set of points in W which are
images of points in S. That is, ~w ∈ T (S) if and only if ∃~s ∈ S ∋ T (~s ) = ~w.
The image of the whole domain, T (V ), is called the range of T .

If T is a linear transformation from V into W (T : V → W ) and U is a
linear transformation from W into X , then T followed by U , written U ◦ T
or just UT , is a linear transformation from V to X . If we have bases for V ,

3Whether or not a map is a homomorphism depends on the structure considered. For

example, the doubling map D on C, D : z 7→ 2z, is a homomorphism on R
2
or C

considered as a vector space, but not when considered as a field, as D(z1) · D(z2) =
4z1 · z2 6= D(z1 · z2) = 2z1 · z2.

4Note the order of the indices, reversed from that in Wk =
∑

i Tkivi below.
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W and X in terms of which T and U are represented by the matrices Tjk

and Uij , then the matrix which represents U ◦ T is

(UT )ik =
∑

j

UijTjk,

which we defined above as the multiplication of the two matrices.
A subset of elements in V which is closed under addition and multipli-

cation by scalars is called a subspace, and is itself a vector space. Because
it must include the vector 0 (because multiplying any vector with the scalar
0 gives the vector 0) such a space is a hyperplane within V passing through
the origin.

If T is a linear transformation from V to W , the image of V is a subspace
of W .

If T is a linear transformation from V to W , and S is a subspace of V ,
the image of S under T is a subspace of W .

If {ei} is a basis of a subspace S of V , any vector in T (S) may be expressed
in terms of {T (ei)}. If the T (ei) are linearly independent, they form a basis
of T (S), and if not, some subset of these form a basis. Thus the dimension of
T (S) is less than or equal to the dimension of S. In the discussion of alter-
native bases for V above, the matrix M represents a linear transformation
T : V → V with {e′i} a basis of T (V ), so n = number of e′i’s is ≤ m = num-
ber of ei’s. But the reverse is also true, the ei’s are in the image of V under
the linear transformation given by the matrix N , so m ≤ n, and therefore
m = n, justifying our statement that all bases of V have the same number
of elements, and the dimension D of V is clearly defined. Note also that the
relation

∑

k NjkMkℓ = δjℓ, together with the relation
∑

k MjℓNℓk = δjk we
get from reversing the two bases, states that M and N are inverses of each
other, and the product is the unit matrix 1Ijk = δjk.

Rank of a Matrix
If T is a linear transformation represented by the matrix M , we have seen

that the range of T , T (V ), is a vector space, with a dimension less than or
equal to the dimension nV of V . We call this dimension r the rank of the
matrix. If the rank of the matrix is less than that of V (r < nV ), the images
of the basis of V satisfy a linear relation

∑

j αkT (ek) = 0, and the vector
~a =

∑

αkek is annihilated by T , that is, T (~a) = 0. The set of all vectors
which are annihilated by T is called the kernel of T . It is a vector space of
dimension nV − r.
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R
n and C

n

If we have an n dimensional vector space V over the reals, and we take
a fixed basis set, the vectors ~v are in 1-1 correspondence to ordered n-tuples
of real numbers, (v1, v2, . . . , vn), the coefficients vi of each of those basis
vectors required to make ~v =

∑

viei. The set of such ordered n-tuples of
real numbers is called R

n. Then we may identify the points (v1, v2, . . . , vn)
of Rn with the vector ~v. The same could be said for an n dimensional vector
space over the complexes, and n-tuples of complex numbers. Thus vectors in
an n-dimensional vector space are equivalent to n-tuples of numbers (in F ),
given a fixed basis for the space. But for many of the vector spaces we wish
to consider, there is no preferred basis. There is often, however, a concept of
distance or norm. Formally this is a function5 f : V → R with

• f(v) > 0 for v 6= 0

• f(v1 + v2) ≤ f(v1) + f(v2)

• f(λv) = |λ|f(v)

for all v, v1, v2 ∈ V , λ ∈ F . We generally write the norm as ||v||. Note the
norm is always real, even for complex vector spaces.

There are a number of norms one might consider6, but for our purposes
we generally want to also impose that the space be an inner product space7,
one with a scalar product 〈·, ·〉 : V × V → F with8

• 〈v1, v2〉 = 〈v2, v1〉
∗

• 〈v1, λv2〉 = λ〈v1, v2〉

• 〈v1, v2 + v3〉 = 〈v1, v2〉+ 〈v1, v3〉

• 〈v1, v1〉 > 0 unless v1 = 0.

5I think this applies only if the field is R or C.
6Common examples of normed spaces which are not inner product spaces are placing

a norm ||x||p = (
∑

|xj |
p)

1/p
for p ≥ 1, which is called the Lp norm. For p = 2 this is the

Euclidean norm and is that of an inner product space, but that is not true for p 6= 2. The
case p = 1 is called the Manhattan norm, the distance you would have to walk if you could
only walk parallel to one or another of the axes. L∞, which says ||x|| = max |xj | is another
used norm.

7Vaughn calls this a unitary vector space
8Some mathematicians make it linear in the first argument rather than the second,

which matters if F = C. Physicists never do.
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for all v1, v2, v3 ∈ V , λ ∈ F . Note that f(v) =
√

〈v, v〉 (the L2 norm) satisfies
the conditions for a norm if 〈·, ·〉 is an inner product. We usually call this
inner product the scalar product.

If V is a finite dimensional9 inner product space, we can choose an or-
thonormal basis êj with 〈êj , êk〉 = δjk. Then the norm of a vector ~V =
∑

j vj êj is ||~V || =
√

∑

j |vj|
2, just as Pythagoras told us. And the inner

product 〈~V , ~W 〉 =
∑

j v
∗

jwj . Note that the scalar product does not give us
a vector in V , but rather a number in F . If F is the complexes, the scalar
product is not symmetric, 〈~v, ~w 〉 6= 〈~w,~v 〉, but rather the two complex num-
bers are complex conjugates of each other, 〈~v, ~w 〉 = (〈~w,~v 〉)∗. But the scalar
product of a vector with itself is still a positive real number (except for 0),
and therefore so is the length.

Dual Space
If we have a vector space V over F , we may define another vector space,

V ∗ to be the space of linear functions from V to F . As the action of the
linear function Λ on an arbitrary vector

∑

viei is determined by its action on
the basis vectors, Λ(

∑

viei) =
∑

viΛ(ei), we may take as a basis of V ∗ the
functions uj : ei 7→ δij. If V is of finite dimension n, clearly so is V ∗. And in
this case V is the dual of V ∗. Things can get more complicated if the space
is infinite dimensional, because of issues of convergence of infinite sums, but
we will consider that later.

Note we are so accustomed to dealing with finite-dimensional vector
spaces with a measure or norm, and always using orthonormal basis vec-
tors to describe the space, that the distinction between the space and its
dual seems to be nit-picking. But note that the dual space is defined even
if there is no norm on V , and u(v) is defined for u ∈ V ∗, v ∈ V , with
ui(vj) = δij , even when we have no meaning assigned to 〈v, v〉, and even,
when we do have some scalar product on V , if we are using non-orthonormal
basis vectors. This will be the case when we consider differential geometry.

An example of a vector space for which there is not a single natural
definition of the inner product is the space of continuous real-valued functions
f(x) on [−1, 1], called C([−1, 1]). Given any positive real function w(x) on

[−1, 1], we may define an inner product 〈f1, f2〉w =
∫

1

−1
w(x)f ∗

1 (x)f2(x)dx.
Despite the norm being w-dependent, the elements of the dual space are not.

9We will also be considering infinite dimensional vector spaces, but there are compli-
cations there, which we will postpone discussing until later.
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For example, if we define vectors Λ ∈ C([−1, 1])∗ by Λ(f) :=
∫

1

−1
λ(x)f(x)dx

for functions λ ∈ C([−1, 1]), we have defined a map from C([−1, 1]) into
C([−1, 1])∗, but Λ(f) 6= 〈λ, f〉w. Notice that the Dirac δ(x) is well defined
in C([−1, 1])∗ but does not correspond to any function in C([−1, 1]). This is
an indication that things can get involved for infinite dimensional spaces.

A vector space with an inner product which is also complete is called a
Hilbert space, especially if it is infinite-dimensional10. Completeness means
that any sequence of vectors with ||~Vn − ~Vm|| → 0 as m,n → ∞ has a limit

vector ~V such that ||~Vm− ~V || → 0 as m → ∞. The space of real polynomials
on [−1, 1] with inner product 〈f1, f2〉w with w = 1 is not complete, because

if we define fn =

n
∑

j=1

xj/j, then for m < n,

(||fn − fm||)
2 =

n
∑

j=m+1

n
∑

k=m+1

1

jk

∫

1

−1

xj+k dx

=

n
∑

j=m+1

n
∑

k=m+1

1− (−1)j+k+1

jk(j + k + 1)
< 2

(n−m)2

m3
−→

m,n→∞

0,

but there is no polynomial p such that ||fn−p|| → 0, because fn → − ln(1−x)
which is not a polynomial, and cannot be approximated perfectly by any
finite polynomial. But if we take the vector space V = L2([−1, 1]) the set of
quadratically integrable functions on [−1, 1], we do get a complete space, a
Hilbert space. Hilbert spaces are very important in quantum mechanics.

If we have an orthonormal basis êj of a Hilbert space, any vector ~v is a
limit of a sequence of vectors ~vn =

∑n

j=1
〈êj ||~v〉êj . As the norm squared is

the sum of |〈êj ||~v〉|
2, all of which are ≥ 0, the finite sum is ≤ ||~v||2, so we

have the Bessel inequality:

n
∑

j=1

|〈êj ||~v〉|
2 ≤ ||~v||2.

For any two vectors ~u and ~v, and for any complex λ, the norm of ~u+ λ~v
is ≥ 0. Thus

0 ≤ 〈~u+ λ~v||~u+ λ~v〉 = ||~u||2 + λ〈~u||~v〉+ λ∗〈~v||~u〉+ |λ|2||~v||2.

10A finite-dimensional inner product space is automatically complete.
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Let λ = −〈~v||~u〉/||~v||2, and this gives

0 ≤ ||~u||2 − 2|〈~u||~v〉|2/||~v||2 + |〈~v||~u〉|2/||~v||2.

Multiply by ||~v||2 and take square roots to get

|〈~u||~v〉| ≤ ||~u|| ||~v||,

which is the Schwarz inequality.
Of course in finite dimensional Euclidean real space these are just state-

ments that if you leave off components in the Pythagorean evaluation for a
hypotenuse you will get an underestimate, and that | cos θ| ≤ 1.

1.1 Morphisms

If T is a linear transformation from V to W and U is a linear transformation
W → V , the two compositions, T ◦ U : W → W and U ◦ T : V → V
are endomorphisms on W and on V respectively. An endomorphism is a
homomorphism from a space into itself. If V and W have dimensions DV

and DW respectively, the rank of T cannot be bigger than min(DV , DW ). If
it is an 1–1 map, (i.e. T (v1) = T (v2) =⇒ v1 = v2) it must have kernal {0}
and rank DV , and if it is onto11, it has rank DW . If T is both 1–1 and onto,
it gives an isomorphism between V and W .

We might possibly have U be the left-inverse of T , (U ◦ T = 1I : V →
V, v 7→ v), but only if T is 1–1, or it might be a right-inverse of T , (T ◦ U =
1I : W → W,w 7→ w), but only if T is onto. To be both, we must have the
same dimension for V and W (DV = DW ), and T and U are both represented
by square matrices, Tij and Uij respectively, and the matrix product is the
DV × DV identity matrix,

∑

j TijUjk = δik =
∑

j UijTjk, and we just say U
is the inverse of T .

We have strayed rather far from the topic of differential operators for solv-
ing for physical fields, just so we could use basis vectors other than cartesian
ones. But the rest of this formal discussion of vector spaces will come back
later, when we consider that solutions of partial differential equations give
us vector spaces, infinite dimensional ones at that!

11That is, all points in W are the image of some point in V .


