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Physics 464/511 First Lecture Sept. 7, 2016

Mathematical Physics

“God used beautiful mathematics in creating the world.”

Paul Dirac

Physics is an empirical science, but it is also a playground of mathematical
ideas of all levels of abstraction, from simple arithmetic to cohomologies. This
course is designed to cover many of the mathematical ideas which are useful in
physics. Most of the course will cover ideas useful in the dynamics of fields,
ideas which are also covered in your math courses on partial differential
equations, complex variables, linear algebra, and differential geometry, as
well as in physics courses on Classical Mechanics, Electromagnetism, and
Quantum Mechanics. Some would include group theory in a course like this,
but we have a separate course (618) so I will leave most of that large topic
for that course.

We physicists tend to be less formal and rigorous than our mathemat-
ics colleagues. Indeed, many physicists before or early in the 20th century
were rather distainful of mathematics other than differential equations. But
throughout that century and since, we have found that more and more ab-
stract mathematics turns out to be the basis of physics.

Those of you who have told me your backgrounds seem to have had pretty
good backgrounds in linear algebra, vector calculus, analysis such as series,
and differential equations, but not much background in complex variables,
special functions, fourier analysis, and the tools of differential geometry. So
while the first set of topics is essential and underlies all that we will discuss,
I will review it only very briefly and spottily, and spend more time on the
second set of topics.

Nonetheless, we should begin by asking what kinds of mathematical en-
tities we need to discuss, and make sure we are familiar with some formal
definitions and mathematical/logical notation.

1 Mathematical Preliminaries

As children, we begin our mathematical careers with the positive integers
Z+ or N+, sometimes called the counting numbers. This is our first step
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in quantifying the world. We first learn to add them, with the important
properties of
1) closure: Addition is a closed binary operation:1 + : Z+ × Z+ → Z+, and
∀x ∈ Z+, ∀y ∈ Z+, x + y ∈ Z+.
2) Addition is commutative: ∀x ∈ Z+, ∀y ∈ Z+, x + y = y + x.
3) Addition is associative: ∀x ∈ Z+, ∀y ∈ Z+, ∀z ∈ Z+, (x+y)+z = x+(y+z).
What this means is that if you take the number you get by adding x and y,
and adding z to this number, you get the same thing as if you first add y
and z, and take the result and add it to x. This is not automatically true of
all binary operations.

A little later we learn to multiply, and discover multiplication is also a
closed binary commutative associative operation, written x · y or just x y.
In addition, multiplication has an identity, an element in Z+ called 1, with
∀x ∈ Z+, 1 · x = x.

The same cannot be said of the positive integers Z+ under addition, but if
we add zero to the set, to make the natural numbers N = (0, 1, 2, . . .), which
are the non-negative integers, then 0 is the identity for addition, ∀x, 0 + x =
x = x + 0.

These properties make Z+ and N semigroups under the multiplication
operation, and N a semigroup under addition. A semigroup needs only an
associative binary operation, not necessarily commutative.

One more property: multiplication is distributive over addition, that is,

∀x ∈ N, ∀y ∈ N, ∀z ∈ N, x · (y + z) = x · y + x · z.

So far, we do not have inverses. But if we extend our set by adding in the
negative integers, to make the set of all integers, Z, then each element x of Z

has an inverse under addition, −z, in Z, such that −z + z = 0. This makes
Z an Abelian group under addition. The expansion preserves the semigroup

1Some useful symbols, logical and set-theoretic: f : A → B means f is a function
mapping elements in the set A to element in B, while f : x 7→ y means f maps the
element x (of the set A) into the element y (of the set B). ∀ means “for all”; x ∈ S means
x is an element of the set S; ∃ means “there exists (a)”; { } is the set of what’s inside
the braces; ∋ means “such that”, but so does | inside { } , e.g. N+ = {n ∈ Z|n > 0}. Of
course | also is needed for absolute value or magnitude, as well as “evaluated at” after a
derivative. For intervals, (a, b) = {x|a < x < b} and changing the ( to [ or ) to ] means
include the end-point. But (a, b) could also mean an ordered pair. And of course ( and
) can be just nesting indicators in an equation, as in 3(a + b). And → can mean other
things as well, but not “implies”, for which I will use ⇒.
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property under multiplication, and these properties, including the distribu-
tion law, makes Z a commutative ring with identity. (commutative because
multiplication on Z is commutative), and the identity is 1. More generally, a
ring needs an abelian addition and just a closed associative distributive (on
both sides) multiplication.

Can we do something to make the multiplication a group as well? That
would require inverses for all elements. So we would need to throw in all the
rational numbers. But even then, 0 does not have an inverse. Throwing in
the rationals (fractions p/q with p and q integers, q 6= 0, and no common
divisors of p and q) makes Q, the set of rational numbers, which is a field.

A field (for mathematicians) is a commutative ring with identity for which
a multiplicative inverse exists for every element other than 0.

These mathematical fields will be very important. The real numbers R

and the complex numbers C are also fields2 and indeed are the ones we will
be most interested in using. Real numbers are not so easily described in
terms of the natural numbers, though the positive real numbers are just how
long a line can be. One can think of the extensions of Z+ → N → Z → Q

to be due to requiring solutions to the equations a + x = a, a + x = 0,
a · x = b, where in each case a and b are members of the previous set. More
elements can be found similarly from Q, or even Z, for example the solution
to x2 = 2, historically the first irrational (and top-secret) number, together
with all other real roots of polynomials with integer coefficients, form the
algebraic numbers which is a field, but not one for which I know any use in
physics. But the reals is a bigger set than the algebraic numbers, and to
define them formally we need to consider all limits of Cauchy sequences of
rational numbers.

Many, though not all, of the quantities of physics are given by real number
multiples of some measure with units, such as the mass of a particle as a
positive real number times 1 kg. Some of these quantities are quantized,
such as charge, so in the right units they are described by integers rather
than more general real numbers, and note that some quantities can take
either sign while some are inherently positive. But some quantities live in
bigger spaces. For example, the electric field at a point has direction as
well as magnitude, and lives in a three-dimensional vector space. Also, the
electric field at a point is just a small part of the full electric field3, a vector-

2The integers modulo a prime p are also fields, known as fields of characteristic p. But
I doubt we will need them.

3This is a physicist’s, not a mathematician’s, field. Sorry, two completely different
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valued function from spacetime, ~E(~r, t). Some objects live in spaces which
are not vector spaces — for example, the possible rotations of a rigid body
are elements of a group (SO(3)), so are neither real variables nor vectors.
Elements of a group can be multiplied (composition) but not added to give
new elements in the group.

And there are quantum mechanical operators, which form an algebra,
with addition and multiplication, but no inverses in general. We will define
that better in homework 2.

So we are interested in quantities that live in different spaces, and are
elements of sets of such quantities. Let’s first check and review our notation.
If A and B are sets

x ∈ A the element x is a member of the set A
A = B the set A contains exactly the same elements as the set B
A ⊂ B all elements in A are also in B
A ⊃ B same as B ⊂ A
A ∪ B union of A and B, all elements in either or both sets
A ∩ B intersection of A and B, all elements that are in both sets
A − B set of those elements of A that are not in B
A × B the set of pairs of elements, one from set A and one from set B.

A × B is called the direct product of A and B.

The null set ∅, also called the empty set, has no elements. The number of
elements in a set is called its cardinality. It can be a finite nonnegative integer,
but it can also be ℵ0, the cardinality of the set of natural numbers, or c, the
cardinality of the real numbers, and there are still larger cardinalities. Two
sets have the same cardinality if there is a 1-to-1 correspondance between
them. This has some strange consequences for infinite sets. For example,
the cardinality of the positive even integers is the same (ℵ0) as that of all
integers, even though the latter would seem to have 4 times (plus 1) as many
elements. In fact, the cardinality of the rationals is also to same — all of
these have ℵ0 members. But the cardinality of the reals, c, is greater.

It is not known whether there is a cardinality between ℵ0 and c. A set
with finite cardinality or cardinality ℵ0 is countable, though some people
define countable as requiring it be infinite.

A subset A of a set U (A ⊂ U) is a set that contains zero or more
elements of U and nothing else. Note ∅ and U are two subsets of U , but if we

meanings for the same word.
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exclude them we have the proper subsets of U . In all, there are 2n distinct
subsets of a set on cardinality n.

As we have mentioned, some sets of elements can have some operations
defined on them, such as addition, or other structures. Then we call the set
a space. One form of such structure consists of operations which map ele-
ments, or pairs of elements, of the space back into the space, as we discussed
for addition and multiplication of groups and semigroups and fields. The
structure might also involve several distinct spaces, as for a vector space,
where a vector can be multiplied by a scalar (i.e. , an element of a different
space which is a field) to produce another vector.

Another form of structure is a property that is associated with subsets.
The most important is the notion of a topological space, for which certain
subsets are declared open, while others might not be. This notion is pretty
abstract in general, but we will principally concerned with metric spaces in
which there is a distance defined between any two elements. In a metric
space the elements are often called points, and the distance is a nonnegative
real number.

We will have more formal mathematics to lay out, but this is pretty dry,
so let’s postpone that and begin to discuss (physicists’) fields and differential
operators and equations for them.


