Physics 464/511 Homework #3 Due: Oct. 3, 2016 at 5:00 P. M.

1 Consider the unit sphere S^2 . Embedded in three dimensional Euclidean space \mathbb{R}^3 with cartesian coordinates, this is the set $\{(x, y, z) | x^2 + y^2 + z^2 = 1\}$, but as it is a two dimensional space, we usually describe it with spherical polar coordinates θ, ϕ , fixing the radius r = 1, with $z = \cos \theta$ and $(x, y) = \sin \theta (\cos \phi, \sin \phi)$. The coordinates θ and ϕ are well-defined, however, only for $\theta \neq 0$ and $\neq \pi$. So we have a chart *C* for \mathcal{U} the unit sphere with the north and south pole removed.

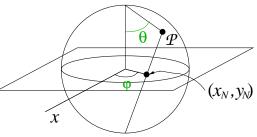
The unit sphere has a natural metric induced from the Euclidean metric of \mathbb{R}^3 , with which we are very familiar:

$$(ds)^2 = (d\theta)^2 + \sin^2 \theta (d\phi)^2$$
, or $g_{\theta\theta} = 1, g_{\phi\phi} = \sin^2 \theta, g_{\theta\phi} = 0.$

- (a) Calculate the Christoffel symbol $\Gamma^{j}_{k\ell}$
- (b) The shortest path (on the sphere) between two points is determined by the geodesic equations. Find the equations which determine $\theta(s)$ and $\phi(s)$, where the *s* parameter is the path length. Show that one of these second order equations is essentially the conservation of L_z .
- (c) It is easier to guess the solution from the knowledge that the answer is a great circle, the intersection of the sphere with a plane though the origin, rather than solving the equations from scratch. Show that this is correct, satisfying the geodesic equations.

2 Consider the unit sphere S^2 as the set of point $\{(x, y, z)|x^2+y^2+z^2=1\}$ in \mathbb{R}^3 . This is really a two dimensional manifold, so it needs to be considered as such. Consider the two open sets \mathcal{U}_N which is the sphere minus the South pole, and \mathcal{U}_S , the sphere minus the North pole. Define the charts C_N and C_S by considering the equatorial plane \mathcal{E} . For each point $\mathcal{P} \in \mathcal{U}_N$ on the sphere,

draw straight lines (in \mathbb{R}^3) through the South pole and \mathcal{P} , and define $\phi_N(\mathcal{P})$ to be the point (x_N, y_N) at which the line intersects the equatorial plane. Similarly define $\phi_S(\mathcal{P})$ to be the point in equatorial plane on the straight line through the



North pole and \mathcal{P} , but call that point $(x_S, -y_S)$. [The reason for inverting y is to keep $dx_S \wedge dy_S$ pointing to the outside of the sphere.]

(a) Find the coordinates of $\phi_N(\mathcal{P})$ in terms of the (x, y, z) of \mathcal{P} in \mathbb{R}^3 , and the inverse relation. (b) Do the same for $\phi_S(\mathcal{P})$, and find the transition function

$$\phi_{SN} = \phi_S \circ \phi_N^{-1} = \phi_s \left(\phi_N^{-1}(x_N, y_N) \right).$$

(c) The metric on the sphere is $(ds)^2 = (d\theta)^2 + \sin^2\theta(d\phi)^2$. Find the metric on the chart C_N . What is the relation to the ordinary Euclidean metric on the plane?

