Physics 464/511 Homework #1 Due: Sept. 19, 2016 at 5:00 P.M.

1 [5 pts] Using the Levi-Civita symbol ϵ , show that

$$\vec{A} \times \left(\vec{B} \times \vec{C} \right) = \vec{B} \left(\vec{A} \cdot \vec{C} \right) - \vec{C} \left(\vec{A} \cdot \vec{B} \right).$$

2 [5 pts] Consider a parallelopiped whose edges at one vertex are given by three vectors \vec{A} , \vec{B} and \vec{C} . Show that it has a volume given by $\vec{A} \cdot (\vec{B} \times \vec{C})$. Note that the volume is the area of one face times the distance (measured perpendicular to that face) between that face and the one opposite.

3 [5 pts] Show that, if \vec{u} and \vec{v} are irrotational fields (*i.e.* $\vec{\nabla} \times \vec{u} = 0 = \vec{\nabla} \times \vec{v}$) then $\vec{u} \times \vec{v}$ is solenoidal (*i.e.* $\vec{\nabla} \cdot (\vec{u} \times \vec{v}) = 0$).

4 [5 pts] Work out the Leibnitz rule for the curl of a product of a scalar field and a vector field; that is, express $\vec{\nabla} \times (\rho \vec{v})$ in terms of ρ , $\vec{\nabla} \rho$, \vec{v} , and $\vec{\nabla} \times \vec{v}$.

5 [5 pts] Show that any solution of the equation

$$\vec{\nabla} \times \vec{\nabla} \times \vec{A} - k^2 \vec{A} = 0$$

with $k \neq 0$ automatically satisfies the vector Helmholtz equation

$$\nabla^2 \vec{A} + k^2 \vec{A} = 0$$

and the solenoidal condition

$$\vec{\nabla} \cdot \vec{A} = 0.$$