Detecting String-Scale QCD Axion Dark Matter

Blas Cabrera Scott Thomas

Strong CP Problem :

$$\mathcal{L} \supset \theta \frac{g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Violates Parity and Time Reversal – (Renormalizable)

No Violation of Parity or Timer Reversal Has Ever Been Observed in Strong Interactions !!!

Bounds on Electric Dipole Moments of Neutron and Atoms

$$\theta \lesssim 10^{-10}$$

Strong CP Problem :

$$\mathcal{L} \supset \theta \frac{g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \qquad \qquad \theta \lesssim 10^{-10}$$

<u>Relic Dark Matter Axions</u>: (Preskill, Wise, Wilczek; Abbott, Sikive; Dine, Fischler)

A COSMOLOGICAL BOUND ON THE INVISIBLE AXION

L.F. ABBOTT¹ Physics Department, Brandeis University, Waltham, MA 02254, USA

and

P. SIKIVIE² Particle Theory Group, University of Florida, Gainesville, FL 32611, USA

Received 14 September 1982

The production of axions in the early universe is studied. Axion models which break the $U(1)_{PQ}$ symmetry above 10^{12} GeV are found to produce an unacceptably large axion energy density.

 $\mathrm{d}^2\phi_\mathrm{A}/\mathrm{d}t^2 + 3H(t)\mathrm{d}\phi_\mathrm{A}/\mathrm{d}t + m_\mathrm{A}^2(T)\phi_\mathrm{A} = 0$

Coherent Production

Axion Exists as a Goldstone During and After Inflation $\theta_i(x)\simeq \text{Constant over Observable Universe} + \text{Random}$

Coherent Production

Axion Exists as a Goldstone During and After Inflation $\theta_i(x) \simeq \text{Constant over Observable Universe} + \text{Random}$

$$\Omega_a h^2 \sim 0.4 \left(\frac{f_a/N}{10^{12} \text{ GeV}}\right)^{7/6} \theta_i^2$$

 $\Omega_{\rm CDM} h^2 \simeq 0.11$

Coherent Production

Axion Exists as a Goldstone During and After Inflation $\theta_i(x)\simeq \text{Constant over Observable Universe} + \text{Random}$

$$\Omega_a h^2 \sim 0.4 \left(\frac{f_a/N}{10^{12} \text{ GeV}}\right)^{7/6} \theta_i^2 \qquad \qquad \Omega_{\text{CDM}} h^2 \simeq 0.11$$

$$\uparrow \qquad \uparrow$$
Fixed Distribution $\langle \theta_i^2 \rangle = \pi^2/3$

 $\left<\,\Omega_a h^2\,\right>\simeq 0.1 \ \ \Rightarrow \ \ \ f_a/N\sim 10^{11\text{--}12}\,\text{GeV}$

Coherent Production

Axion Exists as a Goldstone During and After Inflation $\theta_i(x) \simeq \text{Constant over Observable Universe} + \text{Random}$

Coherent Production

Axion Exists as a Goldstone During and After Inflation $\theta_i(x) \simeq Constant$ over Observable Universe + Random

$$\Omega_a h^2 \sim 0.4 \left(\frac{f_a/N}{10^{12} \text{ GeV}} \right)^{7/6} \theta_i^2 \qquad \Omega_{\text{CDM}} h^2 \simeq 0.11$$

$$\uparrow \qquad \uparrow$$
Distribution Distribution

 $\Omega_a h^2 \simeq 0.1 \ \Rightarrow \ f_a / N \ > 10^{11\text{-}12} \ \text{GeV} \qquad \rho_{\text{DM}} \ \text{Selection Effects } ! ?$

Coherent Production

Axion Exists as a Goldstone During and After Inflation $\theta_i(x)\simeq \text{Constant over Observable Universe} + Random$

- Large Classes of String Vacua $~f_a/N \sim 10^{16 + -1}~GeV$

(Svrcek,Witten)

Moduli - p-Form Fields on Cycles – Shift Symmetry

Coherent Production

Axion Exists as a Goldstone During and After Inflation $\theta_i(x)\simeq \text{Constant over Observable Universe} + Random$

Axion Electrodynamics : (Sikive)

VOLUME 51, NUMBER 16 PHYSICAL REVIEW LETTERS 17 October 1983 Experimental Tests of the "Invisible" Axion P. Sikivie Physics Department, University of Florida, Gainesville, Florida 32611 (Received 13 July 1983) Experiments are proposed which address the question of the existence of the "invisible" axion for the whole allowed range of the axion decay constant. These experiments exploit the coupling of the axion to the electromagnetic field, axion emission by the sun, and/or the cosmological abundance and presumed clustering of axions in the halo of our galaxy. PACS numbers: 14.80.Gt, 11.30.Er, 95.30.Cq $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{e^2N}{12\pi^2}\frac{a}{v}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_a^2a^2[1+O(a^2/v^2)]$ $\nabla \cdot \vec{\mathbf{E}} = \frac{e^2 N}{3\pi^2 v} \vec{\mathbf{B}} \cdot \nabla a, \quad \nabla \times \vec{\mathbf{B}} = \frac{\partial \vec{\mathbf{E}}}{\partial t} = \frac{e^2 N}{3\pi^2 v} \left[\vec{\mathbf{E}} \times \nabla a - \vec{\mathbf{B}} \frac{\partial a}{\partial t} \right], \quad \Box a = \frac{e^2 N}{3\pi^2 v} \vec{\mathbf{E}} \cdot \vec{\mathbf{B}} - m_a^2 a$

<u>Axion Electrodynamics</u> : (Sikive)

$$\mathcal{L} = \frac{1}{2}\epsilon_{0}\mathbf{E}^{2} - \frac{1}{2\mu_{0}}\mathbf{B}^{2} - \frac{3}{4}\xi\frac{\alpha}{2\pi\mu_{0}c}\frac{a}{f_{a}/N}\mathbf{E}\cdot\mathbf{B} \qquad \qquad \xi \simeq \frac{4}{3}\left(\frac{E}{N} - \frac{2}{3}\frac{4+z}{1+z}\right) \qquad \qquad z = m_{u}/m_{d}$$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_{0}} \qquad \qquad \qquad \frac{\mathsf{E/N}}{\mathsf{KSVZ}} \qquad \qquad \frac{\xi}{\mathsf{KSVZ}} \qquad \qquad \frac{\mathsf{E/N}}{\mathsf{KSVZ}} \qquad \qquad \frac{\xi}{\mathsf{KSVZ}} \qquad \qquad \frac{\mathsf{E/N}}{\mathsf{KSVZ}} \qquad \qquad \frac{\xi}{\mathsf{KSVZ}} \qquad \qquad \frac{\mathsf{E/N}}{\mathsf{KSVZ}} \qquad \qquad \frac{\varepsilon}{\mathsf{KSVZ}} \qquad \qquad \frac{\varepsilon}{\mathsf{$$

$$\rho = \frac{3}{4} \xi \frac{\alpha}{2\pi\mu_0 c} \frac{a}{f_a/N} \mathbf{B} \cdot \nabla a$$
$$\mathbf{j} = \frac{3}{4} \xi \frac{\alpha}{2\pi\mu_0 c} \frac{a}{f_a/N} \left(\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t} \right)$$

Galactic Dark Matter Axions

Constant Fields in Laboratory

$$\frac{\partial a}{\partial t} \simeq m_a a \qquad \nabla a \simeq m_a v a \qquad v \sim 10^{-3} c$$
$$\mathbf{B}_{\mathrm{lab}} \gg \frac{1}{c} \mathbf{E}_{\mathrm{lab}}$$

<u>Axion Electrodynamics</u> : (Sikive)

$$\mathcal{L} = \frac{1}{2}\epsilon_{0}\mathbf{E}^{2} - \frac{1}{2\mu_{0}}\mathbf{B}^{2} - \frac{3}{4}\xi\frac{\alpha}{2\pi\mu_{0}c}\frac{a}{f_{a}/N}\mathbf{E}\cdot\mathbf{B} \qquad \qquad \xi \simeq \frac{4}{3}\left(\frac{E}{N} - \frac{2}{3}\frac{4+z}{1+z}\right) \qquad \qquad z = m_{u}/m_{d}$$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_{0}} \qquad \qquad \qquad \frac{\mathbf{E}/\mathbf{N}}{\mathbf{K}\mathbf{S}\mathbf{V}\mathbf{Z}} \qquad \qquad \frac{\mathbf{E}/\mathbf{N}}{\mathbf{0}} \qquad \qquad \frac{\xi}{\mathbf{K}\mathbf{S}\mathbf{V}\mathbf{Z}} \qquad \qquad \mathbf{E}/\mathbf{N} \qquad \qquad \mathbf{E}/\mathbf{N}$$

$$\nabla \times \mathbf{B} = \mu_{0}\epsilon_{0}\frac{\partial\mathbf{E}}{\partial t} + \mu_{0}\mathbf{j}$$

$$\rho = \frac{3}{4} \xi \frac{\alpha}{2\pi\mu_0 c} \frac{a}{f_a/N} \mathbf{B} \cdot \nabla a$$
$$\mathbf{j} = \frac{3}{4} \xi \frac{\alpha}{2\pi\mu_0 c} \frac{a}{f_a/N} \left(\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t} \right)$$

Galactic Dark Matter Axions

Constant Fields in Laboratory

$$\frac{\partial a}{\partial t} \simeq m_a a \qquad \nabla a \simeq m_a v a \qquad v \sim 10^{-3} c$$
$$\mathbf{B}_{\mathrm{lab}} \gg \frac{1}{c} \mathbf{E}_{\mathrm{lab}}$$

Galactic Dark Matter Axions :

$$\rho_{\rm DM}c^2 \simeq 0.3 \text{ GeV cm}^{-3} \qquad \qquad z = m_u/m_d \simeq 0.56$$
$$\rho_a c^2 \simeq \frac{1}{2} \frac{m_a^2 a_0^2}{(\hbar c)^3} \qquad \qquad m_a \simeq \frac{\sqrt{z}}{1+z} \frac{f_\pi m_\pi}{f_a/N} \qquad \qquad \theta = \frac{a}{f_a/N}$$
$$\theta_0 \simeq 3.6 \times 10^{-19}$$

• On length scales $D < \hbar / (m_a v)$

$$\begin{aligned} \theta(\mathbf{x},t) \simeq \theta_0 e^{i\omega t} & \omega = \frac{m_a c^2}{\hbar} \\ \mathbf{j}(x,t) \simeq \frac{3}{4} \xi \frac{\alpha}{2\pi\mu_0 c} \ \theta_0 \omega \mathbf{B}(x) \ e^{i\omega t} \end{aligned} \qquad \begin{aligned} & \mathbf{f_a/N} & \mathbf{v} = \omega / 2 \ \pi \\ \hline \mathbf{10^{12} \ GeV} & \mathbf{1.5 \ GHz} \\ \mathbf{10^{16} \ GeV} & \mathbf{150 \ KHz} \end{aligned}$$

• Stochastic Spectrum $P(\omega) = \frac{\Delta \omega}{\omega} \sim \frac{v^2}{c^2} \sim \frac{1}{Q_a} \sim 10^{-6}$

$$abla imes \mathbf{E} = -i\omega \mathbf{B}$$
For $\mathbf{D} \sim \hbar / \mathbf{m}_{\mathbf{a}}$ $\frac{E}{c} \sim B$

 $\mathsf{B} \quad \mathsf{j}(\omega) \quad \mathsf{B}(\omega)$

• Resonant Cavity TM₀₁₀

B j(ω) B(ω)

f _a /N	D		
10 ¹² GeV	15 cm		
10 ¹⁶ GeV	1.5 km		

$$\nabla \times \mathbf{E} = -i\omega \mathbf{B}$$

For $\mathbf{D} \ll \hbar / \mathbf{m}_{\mathbf{a}} = \mathbf{c} / \omega \qquad \frac{E}{c} \ll B$

Adiabatic Limit

B $j(\omega)$ **B** (ω)

Dark Matter Axion Detection – Large f_a/N :

• Inductor L

Link Slowly Changing Magnetic Flux with Inductor

 $\mathsf{B} \quad \mathsf{j}(\omega) \quad \mathsf{B}(\omega)$

 $L\dot{I} = \mathcal{E} = M\dot{I}_a \qquad I_a = \int \mathbf{j} \cdot d\mathbf{A}$ $I = \frac{M}{L}I_a \qquad \Phi = LI = MI_a$

• Inductor L

Transformer

Axion induced Current One Turn Arm Inductor N Turn Arm

 $L\dot{I} = \mathcal{E} = M\dot{I}_a \qquad I_a = \int \mathbf{j} \cdot d\mathbf{A}$ $I = \frac{M}{L}I_a \qquad \Phi = LI = MI_a$

<u>Dark Matter Axion Detection</u> – Large f_a/N :

Resonant LC Circuit

$$\omega_0^2 = 1 / LC$$

 $\gamma = R/L = \omega_0/Q$

 $\mathsf{B} \quad \mathsf{j}(\omega) \quad \mathsf{B}(\omega)$

$$\left(-\omega^2 L - i\omega R + \frac{1}{C}\right)q = \mathcal{E}$$
$$I = \frac{i\omega \mathcal{E}/L}{2}$$

$$I = \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

On Resonance $U = \frac{1}{2}L|I|^2 = \frac{1}{2}Q^2\frac{M^2}{L}|I_a|^2$

<u>Dark Matter Axion Detection</u> – Large f_a/N :

Resonant LC Circuit

$$\omega_0^2 = 1 / LC$$

 $\gamma = R/L = \omega_0/Q$

 $\mathsf{B} \quad \mathsf{j}(\omega) \quad \mathsf{B}(\omega)$

$$\left(-\omega^2 L - i\omega R + \frac{1}{C}\right)q = \mathcal{E}$$
$$I = \frac{i\omega \mathcal{E}/L}{2}$$

$$I = \frac{i}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

On Resonance $U = \frac{1}{2}L|I|^2 = \frac{1}{2}Q^2 \frac{M^2}{L}I_a|^2$

Inductane :

• Number of Turns N

 $M\propto N$ L $\propto N^2$ M^2 / L $\propto N^0$

Inductane :

Number of Turns N

 $M \propto N$ L $\propto N^2$ M² / L $\propto N^0$

• Permeability

 M^2 / L $\sim \mu$ h $\mu = \mu_r \ \mu_0 \label{eq:multiple}$ $\mu_r \sim 10^{4\text{-}5\text{-}6}$

Overcome Grain Cohesive Forces at Low Temperature with $B=B(\omega')$

Large Permeability Resonant Transformer

Quality Factor:

Core Losses

Radiation Resistance

Capacitor – Electric Dipole Antenna

Inductor – Magnetic Dipole Antenna

Small Antennas Inefficient Radiators

Resistive Losses

Axion Induced Current :

$$|I_a| = \int |\mathbf{j} \cdot d\mathbf{A}| \simeq \frac{3}{4} \xi \frac{\alpha}{2\pi\mu_0 c} \,\omega\theta_0 \Phi \qquad \Phi = \int \mathbf{B} \cdot d\mathbf{A}$$

Magnetic Flux :

	D (m)	h (m)	B (T)	Φ (Weber)
LLNL Axion	0.6	1	8	2
ANL 12 ft Bubble Chamber	4.8	3	1.8	30
CMS Solenoid	6.5	12	4	130

Maximum B \sim Limited

Compact Muon Solenoid: D = 6.5 m h = 12 mB = 4 T

<u>Signal and Noise Temperature</u> :

Noise Power and Temperature

$$P_n = \frac{1}{2} |I_n|^2 R = \frac{U_n R}{L} = U_n \gamma = \frac{U_n \omega_0}{Q}$$
$$\frac{dP_n}{d\omega}\Big|_0 = \frac{2U_n}{\pi} \equiv \frac{2kT_n}{\pi}$$

• Signal Temperature

$$\frac{2kT_s}{\pi} \equiv \frac{dP_s}{d\omega}\Big|_0$$
$$kT_s = \frac{1}{2}QQ_a\frac{M^2}{L}|I_a|^2 = \frac{Q_a}{Q}U_s$$

Scanning Time :

Noise Limited

• Time for Significance S in Signal Bandwidth Δ ω = ω / Q_a

$$t \sim \mathcal{S}^2 \frac{T_n^2}{T_s^2} \frac{Q_a}{\omega}$$

- Time to Scan an Octave $~t_{oct} \sim Q ~t$

$$t_{\rm oct} \sim S^2 \frac{T_n^2}{T_s^2} \frac{Q_a Q}{\omega} = S^2 \left(\frac{L \ kT_n}{M^2 |I_a|^2}\right)^2 \frac{1}{Q_a Q \omega}$$

 \bullet For fixed S and Q_{a}

$$t_{\rm oct} \propto \frac{T_n^2 f_a^5}{Q \ \mu_r^2 \ h^2 \ \Phi^4}$$

$$\frac{M^2}{L} \propto \mu_r h$$

$L\sim$	100-1000 mH
---------	-------------

$Q \sim 10^2$	$C\sim 10100 \ \text{pF}$
---------------	---------------------------

 $T_n \sim 2 \; K \qquad R \sim 1\text{--}10 \; k\Omega$

- For $t_{oct} \sim$ 1 yr with S \sim 5 ~~ DFSZ

	Φ	h	μ_r	f _a /N	ν	Τ _s	T _Q
ANL	30 Weber	3 m	3×10 ⁴	10 ¹⁵ GeV	1.5 MHz	7 mK	350 μ K
CMS	130 Weber	12 m	10 ⁵	10 ¹⁶ GeV	150 kHz	18 mK	35 µ K

	Φ	h	μ_r	f _a /N	ν	Τ _s	T _Q
ANL	30 Weber	3 m	3×10 ⁴	10 ¹⁵ GeV	1.5 MHz	7 mK	350 μ K
CMS	130 Weber	12 m	10 ⁵	10 ¹⁶ GeV	150 kHz	18 mK	35 µ K

Resonant Cavity :

Cylindrical TM₀₁₀

$$C \sim \frac{\epsilon_0 A}{h}$$

$$L \sim \frac{M^2}{L} \sim \frac{\mu_0 h}{2\pi}$$

$$\omega_0 \sim \frac{4c}{D}$$

Resonant Cavity :

Cylindrical TM₀₁₀

• Lower ω_0 with Geometry + Permittivity

$$C \sim \frac{\epsilon A'}{h'}$$
$$L \sim \frac{M^2}{L} \sim \frac{\mu_0 h}{2\pi} \qquad \qquad \omega_0 \sim \frac{4c}{D'} \sqrt{\frac{h'}{\epsilon_r h}}$$

Adiabatic limit - E and B modes small overlap

Resonant Cavity :

• Lower ω_0 with Geometry + Permittivity + Increase M²/L with Permeability

$$C \sim \frac{\epsilon_0 A'}{h'}$$
$$\omega_0 \sim \frac{4c}{D'} \sqrt{\frac{h'}{\mu_r \epsilon_r h}}$$
$$L \sim \frac{M^2}{L} \sim \frac{\mu h}{2\pi}$$

Identical to LC Circuit with one turn Toroidal Inductor

• Detector: SQUID Internal Antenna Coupled to B

 $Q^{-1} = Q_0^{-1} + Q_D^{-1}$ Match Q_0 and Q_D

Axion Dark Matter Detection $~f_a/N \sim 10^{13}$ - $10^{15\text{--}16}~GeV$ $(Low~f_a/N~Covered~Rapidly)$

LC Resonant Circuit

- Large Flux Magnet *
- Modified LC Resonant Cavity *
- Large Permeability Core *
 (Cool Large Mass)