Studying the Proton Radius Puzzle with µp Elastic Scattering

This work support in part by NSF grant PHY 09-69239

Katherine Myers Rutgers University

~50 **MU**on proton **S**cattering **E**xperiment (MUSE) collaborators from:

R. Gilman (Contact person) rgilman@physics.rutgers.edu

E.J. Downie, G. Ruy - Spokespersons

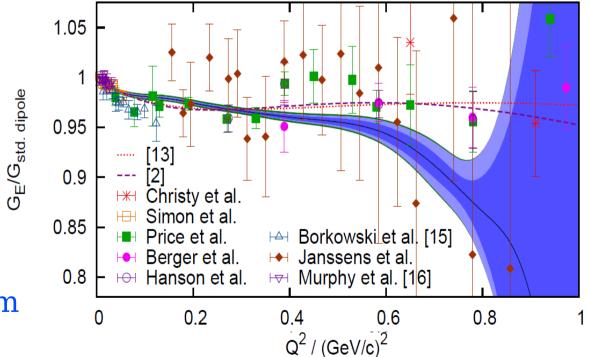
Argonne National Lab, Christopher Newport University, College of William & Mary, Duke University, Duquesne University, George Washington University, Hampton University, Hebrew University of Jerusalem, Institut für Kernphysik, Jefferson Lab, Massachusetts Institute of Technology, Norfolk State University, Old Dominion University, Paul Scherrer Institut, Rutgers University, University of South Carolina, Seoul National University, Soreq Nuclear Research Center, St. Mary's University, Technical University of Darmstadt, Tel Aviv University, Temple University, University of Virginia, Wiezmann Institute

FF's and the Proton Radius

Lowest order *ep* scattering cross section:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{\epsilon \left(1+\tau\right)} \left[\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2)\right]$$

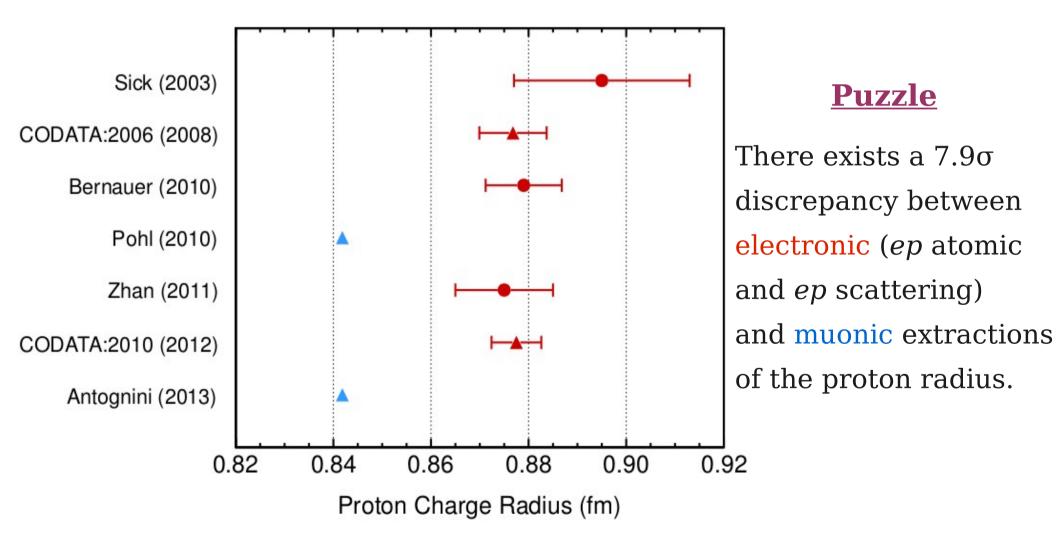
Sach's form factors: G_E and G_M Proton "radius" determined from slope of G_E in the low Q^2 limit


$$\left\langle r_p^2 \right\rangle = -6\hbar^2 \frac{G_E(Q^2)}{dQ^2} \bigg|_{Q^2 \to 0}$$

Low Q^2 data example:

Mainz A1 (2010) ~1400 points covering $Q^2 \sim 0.01 - 1 \text{ GeV}^2$

Global fit of G_{E} , G_{M} with several different models


Their result: $r_{F}^{p} = 0.879(8) \text{ fm}$

J.C. Bernauer et al. PRL 105(24):242001, 2010

The Proton Radius "Puzzle"

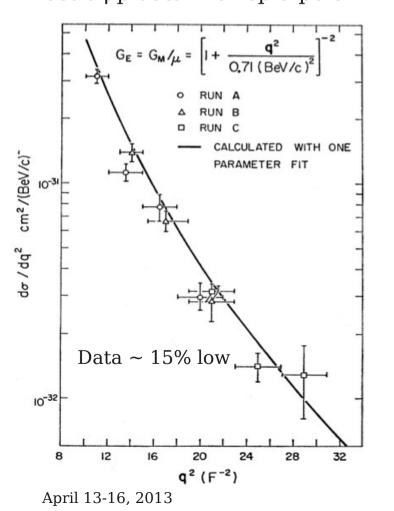
Measurements of the proton radius: • Scattering A Spectroscopy

Possible Resolutions to the Puzzle

Error in the *ep* scattering & atomic extractions: problem with fits, lack of data, underestimated uncertainties

Proton structure issues in theory (TPE): enhanced effects differing between e and μ

Novel beyond Standard Model physics: lepton non-universality, new e/µ differentiating force, parameters constrained by existing data

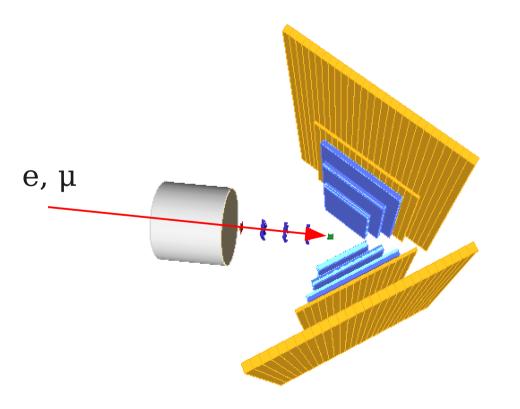

New data is needed

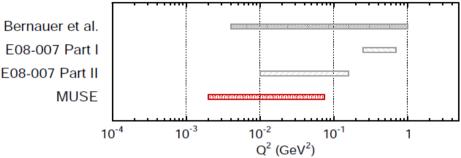
new low $Q^2 ep$ scattering measurement (JLab 12 GeV) μp scattering measurement (this talk)

e-µ Universality

1970s-1980s: several scattering experiments directly tested e- μ universality to ${\sim}10\%$

Ellsworth et al, Phys. Rev. 165 (1968): Elastic µp data with ep dipole FF fit

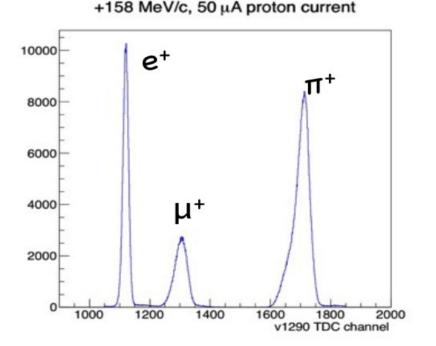

Kostoulas et al, PRL 32 (1974): Parameterization of up versus ep 1.20 5.8 GeV no difference 1.00 Z 7.3 GeV 0.90 COMBINED SAMPLE 0.80 0.06 -0.02 0 0.02 0.10 0.14 0.18 $1/\Lambda^2 (\text{GeV/c})^{-2}$ A. Entenberg et al, PRL 32 (1974): $1/\Lambda^2 = 0.006 \pm 0.016 \text{ GeV}^{-2}$ DIS measurement $\sigma_{\mu\nu}/\sigma_{ep} \approx 1.0 \pm 0.04 \ (\pm 8.6\% \text{ systematics})$ e-C, μ -C scattering are in agreement, but constraints are not very good


APS April Meeting Denver, CO

The MUSE Experiment

<u>up scattering at the Paul Scherrer Institut</u>

- → Low Q^2 range (0.002 0.07 GeV²) to have sensitivity to radius
- \rightarrow Directly test if μ and e are different to a higher precision
- → Simultaneously measure epand μp for a direct comparison
- → Measure e+, e- and μ +, μ to extract TPE effects

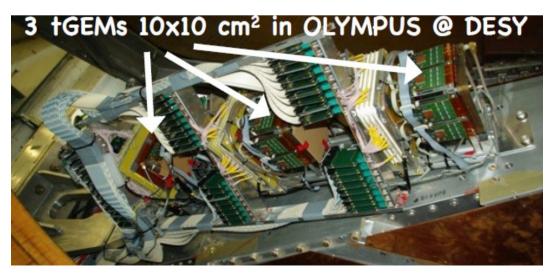

The MUSE Experiment

Experimental Considerations and Components:

Mixed beam of e, μ , and π \rightarrow select beam momenta with good RF separation at target

p = 115, 153, and 210 MeV/c

RF time spectrum measured in Fall 2012 Test Run at 158 MeV/c


RF timing determined by scintillating fiber arrays in the target region:

- \rightarrow 1 ns resolution
- \rightarrow reject pion events

Limit total channel flux to 5 MHz

GEM chambers:

- \rightarrow Determine incident angle to 0.5 mr
- \rightarrow project track to target
- \rightarrow Existing chambers from OLYMPUS

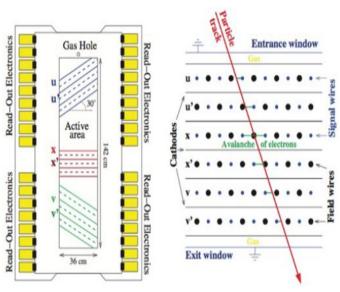
The MUSE Experiment

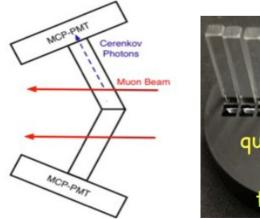
Target:

Scattering measured for $\theta = 20-100$ degrees

→ 4 cm LH2, thickness constrained by effects of multiple scattering

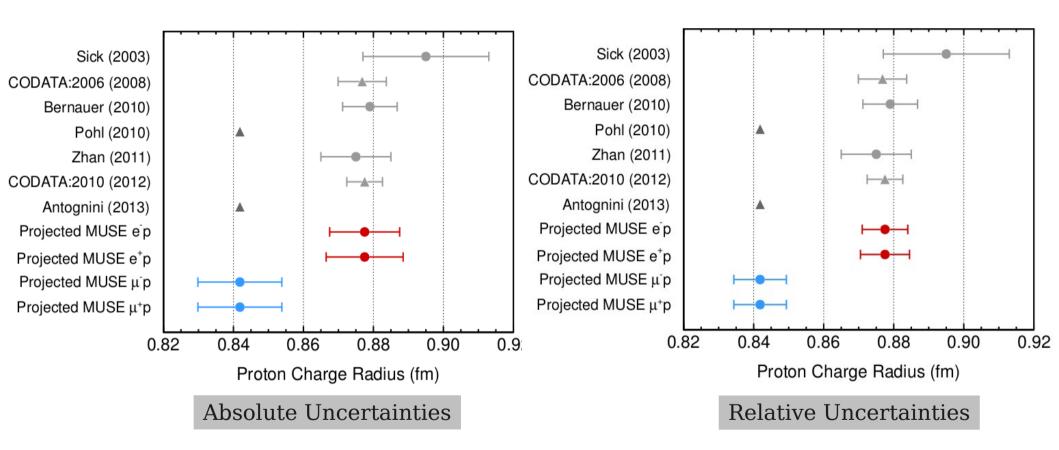
Quartz Cerenkov


in target region


- \rightarrow 50 ps resolution
- \rightarrow better RF time at analysis level for PID
- \rightarrow muon decay rejection

- $\rightarrow 3 UU'VV'XX'$
- \rightarrow mimic Hall A
- BigBite design
- → 98% plane efficiency
- \rightarrow 100 µm resol.

Scintillators



- \rightarrow 2 planes with <= 50 ps resol.
- → PID and muon decay rejection
- → Adopt South Carolina design for CLAS12

Albrow et al (FNAL) April 13-16, 2013

Projected Impact

Point-to-point systematics: 0.7%, dominated by radiative corrections

Uncertainty in radius extractions: Independent measurements: 0.01 fm Relative comparison: 0.006 fm Current discrepancy: 0.035 fm

April 13-16, 2013

APS April Meeting Denver, CO

Summary

- \rightarrow Proton Radius "Puzzle" challenging and unresolved
 - 7σ discrepancy between muonic and electronic measurements
- \rightarrow MUSE will do a direct comparison of ep and μp scattering to:
 - Compare proton charge radius, extract form factors
 - Test beyond SM physics: difference between e's and $\mu\mbox{'s}$
 - Measure two-photon exchange effects
- \rightarrow Timeline for MUSE:
 - Experiment approved by PSI PAC January 2013
 - Successful beam test run Fall 2012
 - Another test run planned June 2013
 - Plan few month "dry run" in late 2015
 - Two 6 month production runs 2016-2017

Summary

- \rightarrow Proton Radius "Puzzle" challenging and unresolved
 - 7σ discrepancy between muonic and electronic measurements
- \rightarrow MUSE will do a direct comparison of ep and μp scattering to:
 - Compare proton charge radius, extract form factors
 - Test beyond SM physics: difference between e's and μ 's
 - Measure two-photon exchange effects
- \rightarrow Timeline for MUSE:
 - Experiment approved by PSI PAC January 2013
 - Successful beam test run Fall 2012
 - Another test run planned June 2013
 - Plan few month "dry run" in late 2015
 - Two 6 month production runs 2016-2017

April 13-16, 2013

Thank You!