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THE ONSET OF CHAOS

PURPOSE
To study the onset of chaos in a nonlinear RLC circuit and to explore with MatLab the

approach to chaos demonstrated by the Logistic Equation.

REFERENCES
"Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator", Paul Lindsay,

Physical Review Letters 47 1349 (1981)
"Mathematical methods for Scientists and Engineers", Peter Kahn, Chapter 16.

Q158.5.K34 1990.

BACKGROUND
A few weeks ago you did an experiment on the forced harmonic motion of a resonant

spring-mass system, which demonstrated several important features:  (1) the mass
undergoes a transient initial motion determined by the initial conditions (such as initial
displacement and velocity), (2) the transient motion damps out leaving a steady state
motion independent of the initial conditions, (3) the steady state motion is a linear function of
the  amplitude of the driving force (i.e. if the force is doubled, the amplitude of oscillation
doubles).  This last feature is a characteristic of a linear system.  You  also may have done
or studied an analogous experiment on a resonant series RLC circuit, where L would play
the role of the mass, 1/C that of the spring constant, and the charge Q stored on the
capacitor the role of the amplitude of oscillation, which showed exactly the same behavior.

                               
In this experiment you will study a series resonant RLC circuit, but with one crucial

change.  In place of using a capacitor whose capacitance is constant, you will use one
whose capacitance depends on the magnitude of the voltage across it.  This capacitor
voltage will then no longer be a linear function of the driving voltage and we have a nonlinear
or anharmonic system.  
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You will view the voltage VR across the resistance in the circuit shown above as you
increase Vo .  At first you will observe a voltage oscillating at the frequency ω, with each
successive peak of the oscillation having the same magnitude.  But when Vo  becomes
large enough, the peaks will alternate in amplitude, that is, VR will no longer have period T =
2π/ω, but rather twice the period, T = 4π/ω.  There has been a period doubling of the
response of the circuit.  As Vo is further increased, the pattern of peaks again changes so
that the same amplitude only occurs every fourth cycle; there has been another period
doubling and the period is now T = 8π/ω .  As Vo is still further increased there is a
succession of period doublings which require smaller and smaller increases in Vo.  You will
rapidly find, that no matter how good your apparatus, you cannot control Vo accurately
enough to discern successive period doublings and the voltage across the resistor appears
to vary randomly with time.  But we know from what we've seen for smaller Vo that the
response of the circuit varies in a perfectly well determined manner.  This deterministic yet
apparently random behavior is called chaos to distinguish it from truly random behavior.  

It has been only since the advent of high speed computers that scientists have realized
the extent to which nonlinear systems may exhibit chaotic behavior and that the approach
to chaos through period doubling is a universal behavior that does not depend on the
details of the system studied.  In this experiment we will first observe the chaotic behavior
of the nonlinear RLC circuit, and then use MatLab to study the approach to chaos for the
Logistic Equation, an extremely simple nonlinear difference equation that exhibits chaos.  

The Logistic Equation,

x(n +1) = a x(n) 1− x(n)[ ]  , (1)

has been used to model natural populations such as the yearly population swings of
lemmings. If the population x(n) during the n-th interval is known, then Eq. (1) gives the
population x(n+1) in the next interval (i.e. the next year, for lemmings). a is called the
growth parameter and is essentially the difference between the birth and death rates.  W e
will allow x(n) to vary between 0 and 1, which limits a to being between 0 and 4.  

Just as for the oscillating mass or the RLC circuit, the Logistic Equation shows an initial
behavior which depends on the starting condition [x(0)] and damps out leaving a steady
state response, i.e. a constant value for x(n) for large n. It is important to notice that there is
no driving term so that the "normal" steady state behavior will be a constant value rather
than the steady state oscillation seen for the RLC circuit.  Despite this difference the
approach to chaos will be the same as that of the RLC circuit.
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The behavior of the steady state response of the Logistic Equation depends strongly
on a as follows:

0 ≤ a < 1:  The growth parameter is too small to sustain any population.  Regardless
of x(0) the population crashes to zero after a few intervals.  x(n) = 0 is called a fixed point of
the system since x(n) = x(n+1).  It is a stable fixed point because after any small disruption
the population returns to zero.  Stable fixed points are also called attractive fixed points or
attractors.

1 ≤ a < 3:    For a = 1 the fixed point at zero becomes unstable and is called a
repellent fixed point or a repeller.  At the same time a new attractor appears, x(n) = 1 - 1/a.
The growth parameter is now large enough to sustain a nonzero steady state population.
The transient solution montonically approaches x(n) = 1 - 1/a for a close to 1, but then for
larger a it oscillates about the attractor before eventually being damped out.

3 ≤ a < 3.4473  At a = 3  the attractor x(n) = 1 - 1/a. become unstable and the
steady state solution oscillates about x(n) = 1 - 1/a with alternate x(n) having the same
value.  For a < 3, the interval between like values for x(n) in the steady state solution was
Δn = 1, while for a ≥3 the interval is Δn = 2; the period has doubled.  Do not confuse the
appearance of this oscillation with the steady state behavior of the RLC circuit before
frequency doubling has set in.

3.4473 ≤ a < 3.5433  At a = 3.4473 the period doubles again so that the interval
between equal values of x(n) is now  Δn = 4.

3.5433 ≤ a < 3.6   The steady state solution goes through a series of period
doublings as shown in the graph on the next page until at a ≈ 3.6 chaos sets in.  The graph
on the next page show this period doubling and approach to chaos.

In your MatLab calculations you will see that in the chaotic region, the steady state is so
sensitive to the value of a that it is impossible for us to predict the solution.  The slightest
error in our determination of a will completely throw off our predicted behavior.  We also
noted that in a linear system or in the nonchaotic region for the Logistic Equation, that the
steady state solution is independent of the starting conditions.  Calculations with the Logistic
Equation will also show that the steady state solution is no longer independent of the
starting condition and is in fact extremely sensitive to the exact value of x(0).  We must
conclude then, that when chaos appears
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we cannot theoretically predict the response of a system even though it is in principle
completely deterministic.  

The sequence of period doublings that you will observe in this experiment for both the
RLC circuit and the Logistic Equation has a universal character that is independent of the
particular system.  Most of the details of this universal behavior are beyond the scope of
this laboratory. However, one aspect is accessible; Feigenbaum (see references in Phys.
Rev. Letter listed above) has demonstrated that if a1 is the value of a where the first period
doubling sets in, a2 the value for the second doubling etc., then for large n

a∞ = an + S δ
−n , (2)

where a∞ is the value of a where chaos sets in.  S is a constant characteristic of the particular
system, but δ = 4.6692... is a universal constant called the Feigenbaum number.  Since δ is
large, this series converges rapidly and Eq.(2) will allow us to estimate δ and predict a∞ with
only a little data.  In this experiment you will measure the first few an  and use this data to
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estimate δ from Eq.(2).  To do this use data from three successive period doublings to
eliminate S and a∞  from Eq.(2) and obtain

δ =
an − an−1
an+1 − an

. (3)

If n is large enough, the value of δ calculated this way should equal Feigenbaum's theoretical
value.  To get a∞  from your data, solve Eq.(2) for S,

S =
an − an −1( )δ n

δ −1
, (4)

and then use Eq.(2) to get a∞ .

EQUIPMENT
The RLC circuit is pre-wired for you.  For the nonlinear capacitor we use a silicon diode.

The diode consists of a layer of p-type silicon in contact with a layer of n-type silicon.  When
the diode is reverse biased the positive charges in the p-type silicon and the negative
charges in the n-type silicon are moved away from the junction by the electric field produced
by the applied voltage.  When the junction is forward biased they are moved toward the
junction.  Thus the distance of separation of the charge in the diode and hence, its
capacitance depends on the voltage. It turns out that this dependence is very nonlinear.
The voltage applied across the diode will not be large enough to turn the diode on and
make it stop acting as a capacitor.  The equipment needed is:

RLC circuit
Oscilloscope
Sine wave generator (12.5 kHZ)
SR760 FFT
4 digit AC voltmeter

PROCEDURE
Nonlinear RLC circuit

1.  Set up the nonlinear RLC circuit as shown below:
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2.  Set the sine wave generator to a frequency of about 12 kHz and maximum

amplitude (about 10 V).  When you use your oscilloscope, you will use two different
modes to display VR in a useful manner; you can either look at VR versus time using the
time sweep for the x-axis, or you can look at VR versus Vo, which is known as a Lissajous
figure.  You will find the Lissajous figure most useful for detecting frequency doubling.
Practice using both modes of operation.

3.  Adjust VR to a small value by turning the knob on the right (i.e., NOT the one labeled
Drive Voltage) counter-clockwise until it stops then turn back about one-half turn. Adjust the
drive level until the voltage on the voltmeter reads about 0.1 V. Look at VR on the
oscilloscope. Adjust the frequency until the amplitude of VR is a maximum.

4.  Look at the spectrum on the FFT. Adjust the span to 12.5 kHz. You should see a
peak around 9-12 kHz. Any other peaks should be smaller than the main peak by at least
40 db.  You may see a double peak at about half the driving frequency. If so, adjust slightly
the driving frequency until the two peaks merge.

5.  Set the oscilloscope to look at the Lissajous figure. Adjust the Volts/Div scales to
give an ellipse about two cm in diameter. Starting with Vo small, slowly increase its value
and look for evidence for period doubling using the Lissajous figure. What happens to the
FFT spectrum when this happens?  Observe the amplitude and frequencies of peaks in
the FFT spectrum.  As you increase Vo still further, observe additional doubling and the
onset of chaos.  You may notice that once you have reached the chaotic region, there are
still values of V0 for which you get simple deterministic behavior (period tripling and
quintupling).  Import an averaged 16 peak spectrum into MatLab and print it for your report.

6.  Using the AC voltmeter to measure Vo and the oscilloscope to measure the peak
value(s) of VR, prepare a graph of VR versus Vo, equivalent to the earlier graph for period
doubling for the Logistic Equation.  Carefully determine the values of Vo where period
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doubling occurs (easier with the spectrum analyzer) and use Eqs. (2)-(4) to estimate a∞ , S,
and δ.  [Note that Vo plays the role of the growth parameter a.] Once the frequency is close
to a doubling point, average the spectrum over 50 samples to better determine the actual
point. For the 3rd or higher points you should try setting the frequency span to half as large
to better isolate the point.

The Logistic Equation
1. Set up a MatLab m-file to calculate x(n) for various values of x(0) and a.  In order to

examine the transient response of the equation, graph x(n) for the first 20 values of n, and
to examine the steady state response, graph x(n) for about 40 cycles when n is large.  (To
get the steady state solution near a = 3, you may have to go up to n ≈ 1000 to avoid the
transient.) Use the subplot() command to put several plots on the same page in order to
see the effect of changing a  or x(0).

2. Examine the behavior of the solutions for a < 3 for various values of x(0) in order to
verify that the equation behaves as described in the BACKGROUND section.  In particular
verify that the steady state solution is independent of the initial condition.

3. Examine the behavior of the solutions for the four cases a = 2.99 and 3.01 with
x(0)=0.667 and 0.5, where period doubling first sets in.  Does the steady state value
depend on the initial value for any of these cases?

4. Determine to four decimal places (3.xxxx) the values of a where period doubling
sets for at least 4 period doublings.  To do this, examine the steady state solution values of
x(n) for n, n+1, n+2, ... to see how many cycles you have to go through before the pattern
repeats.  Then vary a until you find the value where the period doubles.  Use a value of n
near 1000 and increase the accuracy of x(n) as much as necessary to see a change in
pattern.  Use Eqs. (2)-(4) to estimate a∞ , S, and δ.

5. For a in the chaotic regime, a > 3.6, examine the steady state solution to see the
dependence on extremely small changes in a and in x(0).  The effect is easiest to see on a
small graph if you use values near 3.9.  For example, use a starting point of 0.60 and
record the 200th iteration.  Then change the starting point to 0.6001.  How much does the
200th iteration change?


