INSTRUCTORS: Slawomir Piatek: 423F Tiernan Hall, piatek@njit.edu
Andres Jerez: 455 Tiernan Hall, andres.jerez@njit.edu

OFFICE HOURS (SLAWOMIR PIATEK): T & Th 1:00 PM – 2:00 PM; other times by appointment.

PREREQUISITES: Math 112 or 112H

Failure to meet either co-requisites or prerequisites will result in student being dropped from class.

COURSE MATERIALS:

- Mastering Physics Homework System: Be sure that your textbook is sold bundled with a Mastering Physics student access code card. Each student must enroll in the course specified by his/her instructor. Homework assignments will be posted on-line. Students login, download and solve the assigned problems, and submit answers to the automated grading system.

If your textbook does not come bundled with Mastering Physics, you can buy the access directly from the publisher (Pearson) by visiting: http://www.pearsonmylabandmastering.com/northamerica/masteringphysics/

ATTENDANCE: It is expected that students will attend all lectures and recitations. Attendance will be taken at all classes and exams. More than 3 unexcused absences (in total) are excessive. If you have excusable absences contact the Dean of First Year Students. If you must withdraw from the course, do it officially through the Registrar. Do not simply stop attending and taking exams: that forces the instructor to assign a course grade of "F."

HELP: Contact your instructor if you are having trouble with the course; do not simply hope for a miracle and fall further behind. The Physics Dept. office on the 4th floor of Tiernan has specific information on tutoring. Physics tutoring is available through the CAPE organization, and possibly elsewhere.

GRADING: Your final letter grade in Phys 234 will be based on a composite score for term’s work that includes the common exam scores, the final exam, and the homework score.

1) Common Exams Three common exams will be given during the semester. The exam schedule is:

- Common Exam 1: Monday, February 12 4:15 – 5:45 PM, Location TBA
- Common Exam 2: Monday, March 19 4:15 – 5:45 PM, Location TBA
- Common Exam 3: Monday, April 9 4:15 – 5:45 PM, Location TBA
The general policy is that students who miss a common exam will receive a score of zero for that Exam. That score will be included in the calculation of your final grade. Students that miss two common exams automatically fail the course. Students who anticipate an absence from a common exam should discuss their situation with their instructor PRIOR TO their absence. In order to be qualified to receive a "make-up" common exam score (a very rare occurrence), the student should present documentation for not being able to take the test as scheduled. As is the standard policy of NJIT, this documentation should be presented to the student’s Physics 234 instructor AND to the Dean of Students - (973) 596-3466, 2nd floor Campbell Entry. BOTH the Physics 234 instructor and Dean of Students must concur in permitting a "make-up" common exam. Students who miss common exams that do not present documentation within 7 days of the common exam will receive a score of zero for the common exam.

In the event that the above qualification is met, a separate make-up test for the missed common quiz will not be offered. Instead, the portion of the final exam relevant to the contents of the missed test will be considered for giving a grade for the missed test. The instructor will evaluate the final exam questions from those chapters and normalize this portion of the student’s grade for the missed common quiz.

2) **Homework:** Homework assignments will be posted on-line using the Mastering Physics Homework System: www.masteringphysics.com. For Dr. Piatek section, please use the following course ID (no quotes): “MPPIATEK234S18”. Homework due dates will be announced. The recommended problems from the text (see the syllabus) will be discussed during the recitation class.

3) **Final Exam:** Thursday, May 10, 6:00 PM – 8:30 PM, FMH 207

FINAL LETTER GRADES: Here are the weights to be used for calculating the composite score:

- 60% for all three common exams (20% each)
- 30% for the final exam
- 10% for the total of homework work

The cutoff percentages for various letter grades will be in the range of:

85% for A
80% for B+
70% for B
65% for C+
50% for C
40% D
F below 40%

Final grades are not negotiable: A score of 84.999999% is a B+, not an A.

STUDENTS WITH DISABILITIES:

If you need accommodations due to a disability please contact Chantonette Lyles, Associate Director of Disability Support Services, Fenster Hall Room 260 to discuss your specific needs. A Letter of Accommodation Eligibility from the Disability Support Services office authorizing your accommodations will be required.

HONOR CODE STATEMENT: NJIT has a zero-tolerance policy for cheating of any kind and for student behavior that disrupts learning by others. Violations will be reported to the Dean of Students. The penalties range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT. Avoid situations where your own behavior could be misinterpreted as dishonorable. **Students are required to agree to the NJIT Honor Code on each exam, assignment, quiz, etc. for the course.**

Turn off all cellular phones, wireless devices, computers, and messaging devices of all kinds during classes and exams. Please do not eat, drink, or create noise in class that interferes with the work of other students or instructors. Creating noise or otherwise interfering with the work of the class will not be tolerated.
5) Learning Outcomes

- Recall the definitions and relationships involving oscillations and waves, such as wavelength, frequency, angular frequency, amplitude, phase, wave speed, restoring force, longitudinal and transverse waves, standing waves, damping, interference, diffraction, Doppler shift, and other wave phenomena.

- Comprehend the meaning of the equations governing oscillations and waves, and be able to manipulate them to obtain any desired quantitative relationship. Understand the extension of these equations to the quantum realm (wave-particle duality) for free particles, atoms and nuclei. Generalize the concepts underlying the equations, such as restoring force, inertia, and energy.

- Apply the equations governing oscillations and waves to mechanical systems for various boundary conditions, to optical systems, and to quantum physics in atomic and nuclear systems. Calculate unknown quantities based on physical relationships, boundary conditions, and known quantities.

- Analyze graphs of oscillatory and wave phenomena to obtain wavelength, frequency, amplitude, phase, particle and wave position, velocity, acceleration, damping time constant, as a function of time. Identify and distinguish types of wave motion such as transverse, longitudinal, standing waves, reflection, and refraction.

- Evaluate the soundness and precision of your answers. Explain and interpret your solutions to problems in a way that shows deeper understanding. Identify and appraise the range of applicability of your results, and their limitations.

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>TEXT STUDIES</th>
<th>RECOMMENDED PRACTICE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 (1/18/18) Oscillations and Waves</td>
<td>Chapt. 14 – Sections 1-7 & Chapt. 15 – Sections 1-8</td>
<td>pg. 463 – 3, 4, 9, 19, 27, 45, 48 pg. 500 – 1, 7, 8, 12, 18, 24, 42, 44</td>
</tr>
<tr>
<td>Week 2 (1/25/18) Sound</td>
<td>Chapt. 16 – Sections 1-9</td>
<td>pg. 543 – 1, 9, 15, 25, 29, 39, 45, 50</td>
</tr>
<tr>
<td>Week 3 (2/1/18) Light</td>
<td>Chapt. 33 – Sections 1-7</td>
<td>pg. 1107 – 1, 5, 9, 11, 17, 19, 25, 31, 33, 36</td>
</tr>
<tr>
<td>Week 4 (2/8/18) Geometric Optics</td>
<td>Chapt. 34 – Sections 1-8</td>
<td>pg. 1154 – 1, 5, 9, 15, 17, 20, 25, 27, 31, 43</td>
</tr>
<tr>
<td>Week 5 (2/15/18) Interference</td>
<td>Chapt. 35 – Sections 1-5</td>
<td>pg. 1184 – 5, 9, 13, 17, 19, 21, 25, 29, 30, 31</td>
</tr>
<tr>
<td>Week 6 (2/22/18) Diffraction</td>
<td>Chapt. 36 – Sections 1-7</td>
<td>pg. 1216 – 1, 3, 13, 15, 25, 29, 39, 45, 47</td>
</tr>
<tr>
<td>Week 7 (3/1/18) Relativity</td>
<td>Chapt. 37 – Sections 1-9</td>
<td>pg. 1254 – 5, 10, 15, 19, 22, 24, 27, 33</td>
</tr>
<tr>
<td>Week 9 (3/22/18) Particles and Waves</td>
<td>Chapt. 39 – Sections 1-6</td>
<td>pg. 1320 – 1, 8, 17, 22, 27, 29, 41, 43, 52</td>
</tr>
<tr>
<td>Week 10 (3/29/18) Quantum Mechanics</td>
<td>Chapt. 40 – Sections 1-5</td>
<td>pg. 1357 – 1, 5, 10, 14, 33, 40, 42</td>
</tr>
<tr>
<td>Week 11 (4/5/18) Atomic Structure</td>
<td>Chapt. 41 – Sections 1-7</td>
<td>pg. 1399 – 1, 7, 13, 19, 22, 28, 34</td>
</tr>
<tr>
<td>Week 12 (4/12/18) Molecules and Condensed Matter</td>
<td>Chapt. 42 – Sections 1-3</td>
<td>pg. 1433 – 1, 5, 8, 12, 16, 17, 19, 20</td>
</tr>
<tr>
<td>Week 13 (4/19/18) Band Structure, PN Junction, & Transistors</td>
<td>Chapt. 42 – Sections 4-7</td>
<td>Pg. 1433 – 23, 26, 27, 28, 29, 30, 31, 32, 33, 34</td>
</tr>
<tr>
<td>Week 14 (4/26/18) Nuclear Physics</td>
<td>Chapt. 43 – Sections 1-8</td>
<td>pg. 1474 – 1, 6, 13, 19, 21, 39</td>
</tr>
</tbody>
</table>

Tuesday, May 1 follows a Friday schedule
Spring break: 3/11 – 3/18
Reading days: May 2 & 3
Final exam period: May 4 – May 10