
(presumably constant at about 150 km s21). Combined with the
presence of SiO masers in W43A14, which are detected in very few
proto-planetary nebulae9, and with the OH masers such as those
typically found in OH/infrared stars (Fig. 2), this estimate strongly
suggests that we are observing a star in transition. It is likely that the
“molecular jet” traced by H2O masers was created in the OH/
infrared star phase, before the transition to a proto-planetary
nebula. Comparing the above timescales with the duration of
significant mass-loss rate (1,000–4,000 years)28 from an OH/infra-
red star (see also Fig. 2), a molecular jet should affect the develop-
ment of nebula morphology from the beginning of its formation1.
However, the driving object and the formation mechanism of the jet
are still unclear. W43A could be an AGB star able to create a
collimated jet driven by the magnetic force owing to the dynamo
action at the interface between the rapidly rotating core and the
more slowly rotating envelope of the star6. Alternatively, W43A
could be a binary system where the ejected material from a mass-
losing star falls onto an accretion disk surrounding a companion
that creates the jet29,30. A
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When matter is cooled from high temperatures, collective
instabilities develop among its constituent particles that lead to
new kinds of order1. An anomaly in the specific heat is a classic
signature of this phenomenon. Usually the associated order is
easily identified, but sometimes its nature remains elusive. The
heavy fermion metal URu2Si2 is one such example, where the
order responsible for the sharp specific heat anomaly at
T 0 5 17 K has remained unidentified despite more than seven-
teen years of effort2. In URu2Si2, the coexistence of large elec-
tron–electron repulsion and antiferromagnetic fluctuations leads
to an almost incompressible heavy electron fluid, where aniso-
tropically paired quasiparticle states are energetically favoured3.
Here we develop a proposal for the nature of the hidden order in
URu2Si2. We show that incommensurate orbital antiferromag-
netism, associated with circulating currents between the
uranium ions, can account for the local fields and entropy loss
observed at the 17 K transition. We make detailed predictions for
the outcome of neutron scattering measurements based on this
proposal, so that it can be tested experimentally.

The intermetallic compound URu2Si2 contains a dense lattice of
local moments where quantum fluctuations barely prevent spin
ordering; the residual antiferromagnetic couplings between the
strongly repulsive electrons are large and can drive new types of
collective instabilities2. At T 0 ¼ 17.5 K, URu2Si2 undergoes a
second-order phase transition characterized by sharp discontinu-
ities in bulk properties, including specific heat4, linear4 and non-
linear5,6 susceptibilities, thermal expansion7 and resistivity8. The
accompanying gap in the magnetic excitation spectrum9 suggests
the formation of an itinerant spin density wave at this temperature;
however, the size of the observed staggered moment10

(m 0 ¼ 0.03mB) cannot account for the entropy loss at this tran-
sition. The distinction between the primary hidden-order pa-
rameter and the secondary magnetic-order parameter is clarified
by high-field measurements11,12 which indicate that the bulk
anomalies survive up to an applied field strength of 40 tesla (T),
whereas the magnetically ordered moment is destroyed by fields less
than half this magnitude (15 T) (ref. 13). Furthermore, the size of
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the small ordered moment grows linearly with pressure14, while the
gap associated with the hidden order is relatively robust over this
pressure range15.

There have been many theoretical proposals for the primary
order parameter in URu2Si2 (ref. 16). Two recent nuclear magnetic
resonance (NMR) studies have provided insights with crucial
consequences for the nature of the hidden order. It has been widely
assumed that the spin antiferromagnetism and the hidden order are
coupled and homogeneous. However, a recent NMR study of
URu2Si2 under pressure17 indicates that for T , T 0 there exist
distinct antiferromagnetic and paramagnetic regions, implying
that the magnetic and the hidden orders are phase-separated. This
conclusion, supported by muon spin resonance (mSR) data18,
implies that the hidden-order phase contains no spin order. The
observed growth of the staggered spin moment with applied
pressure14 is then simply a volume-fraction effect which develops
separately from the hidden order through a first-order transition19.
At ambient pressure roughly a tenth or less of the system17,18 is
magnetic, with m spin ¼ 0.3mB. The main implication of these
measurements for theory is that the magnetic and the hidden-
order parameters are independent19.

In a parallel study, NMR measurements at ambient pressure20 on
URu2Si2 indicate that at T # T0 the central (non-split) silicon
NMR linewidth develops a field-independent, isotropic component
whose temperature-dependent magnitude is proportional to that of
the hidden-order parameter. These results imply an isotropic field
distribution at the silicon sites whose root-mean-square value is
proportional to the hidden order (w):

kBaðiÞBbðjÞl¼ A2w2dab ð1Þ

and is about 10 gauss (G) at T ¼ 0. This field magnitude is too small
to be explained by the observed moment10 which induces a field
B spin ¼ (8/3)pMa23 ¼ 100 G where a is the U–U bond length
(a ¼ 4 £ 1028 cm). Furthermore, this moment is aligned along
the c axis, and thus cannot account for the isotropic nature of the
local field distribution detected by NMR. These measurements
indicate that as the hidden order develops, an isotropically dis-

tributed static magnetic field develops at each silicon site. This is
unambiguous evidence that the hidden-order parameter breaks
time-reversal invariance.

Guided by these experiments, we now discuss our proposal for
the nature of the hidden-order parameter. The magnetic fields at the
silicon nuclei have two possible origins21: the conduction electron–
spin interaction and the orbital shift that is due to current densities.
In URu2Si2, the electron fluid exhibits a strong Ising anisotropy
along the c axis, as measured by the Knight shift20; hence, electron–
spin coupling cannot be responsible for the observed isotropic
fields. It would thus appear that these local fields are induced by
currents that develop inside the crystal as the hidden order develops,
and accordingly we attribute the observed isotropic linewidth to the
orbital shift.

Here we propose that URu2Si2 becomes an incommensurate
orbital antiferromagnet at T ¼ T0 with charge currents circulating
between the uranium ions. Similar states have been studied exten-
sively in the context of the two-dimensional Hubbard model22–26,
particularly in connection with staggered flux phases27,28: more
recently, commensurate current-density wave order has been pro-
posed to explain the spin-gap phase in the underdoped copper oxide
superconductors29,30. The planar tetragonal structure of URu2Si2
lends itself naturally to an anisotropic charge instability of this type.
Here we show that incommensurate orbital antiferromagnetic order
in URu2Si2 can quantitatively account for the existing specific heat
and NMR data for T # T0. To test this, we make specific predictions
for neutron scattering. Calculation of the structure factor requires
knowledge of the fields throughout the full volume in real-space.
The NMR only yields this information at discrete points, so we need
some additional input to proceed. In the orbital antiferromagnet,
the spatial dependence of the fields throughout the sample is
determined by the requirement that the field distribution at the
silicon sites is isotropic. Using this approach, we are able to link
quantitatively the fields observed by NMR to the large specific heat
anomaly that develops at T0. We also use the spatial field distri-
bution associated with the incommensurate orbital antiferromag-
net to predict the position, intensity and form-factor associated

U

Si

xj
(1)

xj
(2)

x'

a

b

X

Figure 1 Magnetic field distribution associated with incommensurate orbital currents in

the (0, 0, 1) plane. a, Schematic illustration of incommensurate orbital currents, showing

resulting magnetic fields above and below the (0, 0, 1) plane. X (1)
j and X (2)

j are the

coordinates of the plaquette, and X 0 denotes the coordinate along a uranium–uranium

bond. b, Side view showing how proposed field distribution is isotropic at silicon sites with

a staggered current distribution between layers corresponding to Q ¼ (0.16, 0.16, 1).
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with neutron scattering peaks on a surface of constant anisotropy in
momentum space centred on the origin.

We begin by estimating the local fields at the silicon sites that are
due to orbital currents circulating around the square uranium
plaquettes in the a–b plane. On dimensional grounds, the current
along the U–U bond is given by I < eD=�h where D is the gap
associated with the formation of hidden order. Then the field
induced at a height a above a plaquette is B < (2/ac)(eD/
�h) ¼ 11 G, in good agreement with the local field strength detected
in NMR measurements; here4,9–11 we have used D ¼ 110 K. The
resulting orbital moment, morb < 0.02mB, is comparable to the
effective spin moment at ambient pressure (m 0 ¼ m spin Pamb ¼
0.10 m spin ¼ 0.03mB). We emphasize that an orbital moment
produces a local field an order of magnitude less than that associated
with a spin moment of the same value; the low field strengths
observed at the silicon sites are quantitatively consistent with our
proposal that they originate from charge currents.

An orbital moment, m orb ¼ 0.02mB, can also account for the
sizable entropy loss at the transition. In a metal the change in
entropy is given by DS ¼ DgnT0, where Dgn is the change in the
linear specific heat coefficient resulting from the gapping of the
Fermi surface. Dgn is inversely proportional to the Fermi energy e F

of the gapped Fermi surface. Thus, in general, the change in entropy
per unit cell is given by DS < kBðkBT0=eFÞ: Exploiting the mean-
field nature of this transition (2D / T0), we find that for the orbital
antiferromagnet (OAFM):

DSOAFM < kB
morb

m*
B

 !
¼ 0:02kB

mB

m*
B

 !
ð2Þ

where m*
B ¼ ðe=�hcÞa2eF is the saturated orbital moment reached

when the hidden-order gap D is approximately eF. The ratio
mB=m

*
B ¼ ða0=aÞ2ðeH=eFÞ; where a 0 is the Bohr radius and

e H ¼ e2/(2a0) is the energy of a hydrogen atom. For URu2Si2, the
very large size of (eH/eF) < 103 produced by the large mass renor-
malization of the heavy electrons actually offsets the small ratio a0/
a < 1021, so that mB=m

*
B < 10; and DSOAFM < 0:2kB ¼ 0:3kB ln 2 is a

number in good agreement with experiment4. The critical field for
suppressing the associated thermodynamic anomalies is distinct
from its spin counterpart; the ratio Horb

c =Hspin
c < mB=m

*
B < 10 is

qualitatively consistent with the observed critical field of approxi-
mately 40 Tassociated with the destruction of the hidden order11–13.
From this simple discussion, we see that the sizable entropy loss
associated with the development of the orbital antiferromagnetic
state is a direct consequence of the strong renormalization of the
electron mass in URu2Si2 (m*/m / e H/e F). The absence of such a
large effective mass (m*/m < 3) in the copper oxides could explain
why analogous thermodynamic anomalies are difficult to observe
there.

Next we test whether the proposed orbital antiferromagnetism
will yield the observed isotropic local fields. We allow the circulating
current around a plaquette (see Fig. 1) centred at site X to develop a
modulated magnetization M(X) ¼ we iQ·X. The current along a
bond is then the difference of the circulating currents along its
adjacent plaquettes. The field at a silicon site can be computed using
Ampere’s law, where the relevant vector potential is:

AðxÞ ¼
1

c j

Xðxð2Þ
j

xð1Þ
j

dx
0 Iðx jÞ

jx 2 ðx jþ x 0 Þj
ð3Þ

where xð1;2Þj are the endpoints of the bond at site xj.
The silicon atoms in URu2Si2 are located at low-symmetry sites,

so that the fields do not cancel; they reside above and below the
centres of the uranium plaquettes. Microscopically, wavevector
selection is most probably due to details of the Fermi surface;
however, we can obtain a good idea of the likely modulation Q
vector from the isotropic nature of the field distribution at the

silicon sites. For example, in the commensurate case Q ¼ (1/2,1/2,1),
the fields on the silicon sites are only along the c axis and thus the
field distribution would be highly anisotropic. Consider a wave-
vector (q,q,1) (see Fig. 1). In this case, the currents are modulated
within a plane with a wavelength 2p/q, but staggered between
planes. This then produces a circulating field distribution where
the component of the field parallel to the (0,0,1) planes becomes
larger and larger as q is reduced. To obtain an isotropic field
distribution, q needs to be reduced to a point where the horizontal
and vertical components of the field are comparable. A detailed
calculation based on the above model shows that the condition of
perfect isotropy yields a circle of wavevectors (Fig. 2) centred
around Q ¼ (0,0,1) with a radius q < 0.22. Relaxation of this
constraint results in an annulus of possible Q vectors, as shown in
Fig. 2.

Our proposal of incommensurate current ordering in URu2Si2

can be tested by experiment. In particular we can Fourier-transform
the real-space magnetic fields to calculate the neutron-scattering
cross-section:

dj

dQ
¼

gN e

8p�hc

� �2

jBðqÞj
2
¼ r2

0SðqÞ ð4Þ

Here jB(q)j2 is the structure factor of the magnetic fields produced
by the orbital currents and SðqÞ ¼ jBðqÞj

2
=ð4pmBÞ

2 is the structure
factor of the orbital magnetic moments, measured in units of
electron Bohr magnetons (mB). The factor r0 ¼ gNe2=4mec2; me is
the electron mass and gN is the neutron gyromagnetic ratio. Using
the vector potential from equation (3), we have calculated the
magnetic field distribution for the incommensurate orbital anti-
ferromagnet described above, and find that its Fourier transform is
given by:

BðqÞ ¼
4p

c
NIa2

Gn1 ;n2 ;n3

X
dq;QþGj0

qxa

2

h i
j0

qya

2

h i
ð1þð21Þðn1þn2þn3ÞÞ

�
qyx̂ 2 qxŷ

2q

� �
£ q̂

� �
ð5Þ

where j0(x) ¼ (sin x)/x. From this expression, we can determine the
intensities and the form factors associated with the diffraction. We
find that there exists a set of dominant peaks associated with a
constant anisotropy locus of wavevectors (Fig. 2) in the first
Brillouin zone where S(q) ¼ 0.18 (NIa 2/cmB), indicating that
roughly a fifth of the total integrated weight of S(q) lies here.
Using the sum rule that relates the total integrated weight to the
square of the moment, and the fact that at ambient pressure only a
tenth of the sample is (spin) magnetic, we find that the scattering
peaks due to orbital ordering in the first Brillouin zone should have
1/50 the intensity of the analogous spin magnetic peaks at ambient
pressure. We have also calculated that these peaks will have a form
factor (see Fig. 2) that scales with wavevector as q24, where this
power-law decay indicates an extended scattering source.

We end with remarks about the microscopic formation of these
charge currents. At low temperatures, heavy electron materials form
almost incompressible Fermi liquids. The large Coulomb repulsion
between the Landau quasiparticles strongly suppresses on-site
charge fluctuations, demanding nodes in the particle–hole wave-
function. The resulting anisotropically paired states are also
favoured by the residual antiferromagnetic interactions that persist
in the heavy electron fluid. Indeed, we believe that the same d-wave
pairing that drives the superconducting transition in URu2Si2 at
T ¼ 1.5 K also plays an important role in the formation of the
orbital antiferromagnetism. We have found that the development of
such anisotropic charge-density wave pairing occurs naturally in a
simple model of URu2Si2 with nearest-neighbour antiferromagnetic
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interactions:

HI ¼
q

X
JðqÞSðqÞ·Sð2qÞ ð6Þ

Here S(q) is the Fourier transform of the magnetization at wave-
vector q and JðqÞ ¼ 2Jðcos qxþ cos qyÞ for a nearest-neighbour
interaction between adjacent U atoms in the basal plane. Expanding
this interaction in terms of quasiparticle operators, we find that it
can be rewritten as a sum of attractive interactions in four inde-
pendent anisotropic charge-density wave channels:

HI ¼2J
G¼1;4;k1;k2;Q

X
ðgG

k1
Þ*gG

k2
rk1
ðQÞrk2

ð2QÞ ð7Þ

Here rkðQÞ ¼
P

j¼^1=2c†
k2Q=2j

ckþQ=2j is the charge-density oper-
ator at wavevector Q, expressed in terms of creation and annihil-
ation operators of the heavy quasiparticles. The form factors are
g1;2ðkÞ ¼ cosðkxÞ^ cosðkyÞ;g

3;4ðkÞ ¼ iðsinðkxÞ^ sinðkyÞÞ: Of these
four possibilities, channels 1 and 3 do not have nodes, and are
therefore suppressed by local Coulomb interactions. In the remain-
ing two channels, only G ¼ 4 breaks time reversal symmetry, giving
rise to incommensurate orbital currents. One of the questions for
further study concerns the excitations of this mean-field state.
URu2Si2 is known to develop a dispersing singlet excitation10 at
T ¼ T0. This mode was previously attributed to spin antiferromag-
netism, now known to be absent from the hidden order phase17. We
plan to study the possible identification of this propagating mode
with the gapless phason associated with the uniform translation of
an incommensurate orbital antiferromagnet.

Thus we have discussed the theoretical implications of two recent
NMR experiments on the hidden order in URu2Si2. Pressure-
dependent measurements indicate that it is completely independent
of the spin magnetism in this material. We argue that the develop-

ment of isotropically distributed magnetic fields at the silicon sites
at T ¼ T0 implies that the hidden-order parameter breaks time-
reversal symmetry. The size and the isotropy of these observed local
fields lead us to propose that URu2Si2 becomes an incommensurate
orbital antiferromagnet at T , T0. The heavy electron mass reduces
the saturation value of the orbital moment, accounting for the
sizable entropy loss at the transition and the scale of the associated
critical field. We calculate the positions, intensities and form factor
associated with the resulting neutron-scattering peaks so that this
proposal can be tested by experiment. A
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Figure 2 An isotropic magnetic field distribution at the silicon sites can be produced

by many different wave vectors Q for orbital order, all of which give qualitatively similar

neutron scattering patterns. a, Contour plot showing locus of constant anisotropy around

a ring of radius Q ’ ¼ 0.22 in the vicinity of Q ¼ (0, 0, 1). b, Predicted elastic neutron

scattering intensity, where ~SðqÞ
1
2 ¼ S ðqÞ

1
2=
ÿ

NIa2

cmB

�
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBðqÞj2
p

gives a measure of the

Fourier spectrum of magnetic fields B(q ), plotted for the representative case Q ¼ (0.16,

0.16, 1).
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