
SPIN GLASS
THEORY RAISES ITS HEAD
Philip W. Anderson

Sam Edwards was finishing out his
term as head of the SRC, the British
equivalent of the NSF, during the
winter of 1974-75, after being ap-
pointed to a professorship at Cam-
bridge. (He is now Sir Sam, the
Cavendish Professor, successor in
that chair to James Clerk Maxwell
and four or five Nobel laureates,
including Sir Nevill Mott.) Being
Sam, he was unfazed by the full-time
SRC job and needed research to do on
the train back and forth to London, so
he dropped in every Saturday at the
Cavendish Laboratory for coffee and a
chat with me and the theory group. I
made a point that year of being there
on Saturdays as well as during the
week, and we did a lot of talking about
localization and the "Fermi glass"
(that is, the problem of electrons fro-
zen in place by localization and inter-
actions), the theory of liquids and the
glass transition, and other problems
of mutual interest.

One of these problems was that of
dilute magnetic alloys, which seems
to have acquired the name "spin
glass" in a 1970 paper I wrote with
Wai-Chao Kok (now at Singapore
University) for a 65th-birthday fest-
schrift for Mott in the Materials
Research Bulletin. (See my columns
in the January and March issues of
PHYSICS TODAY.) I described to Sam
the old mystery of continuous, dis-
ordered freezing in these alloys, and
the new mystery of the sharp cusps
and nonlinear behavior that John A.
Mydosh had reported. Sam's ears
pricked up. He had a notebook full of
methods he had been trying on gela-
tion, the glass transition and various
polymer questions, but had been frus-
trated because these are not clean,
well-posed problems. (He had also
tried the methods on localization; and
later, in the hands of Franz Wegner
and Shinobu Hikami, they did work
reasonably well on that problem—but
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some extra frills were needed.) I was
convinced that the random Heisen-
berg Hamiltonian

where S; is a classical spin vector at
site i and JtJ is the interaction
between the spins on sites i and j , was
almost certainly the proper state-
ment of the spin glass problem. Sam
was overjoyed when he learned this,
because here was a nice clean prob-
lem to work his methods on.

The methodology of the resulting,
justifiably famous paper was almost
entirely his. (That's why I can make
such an immodest statement.) But
the basic physical concept we worked
out together. We decided that the
thing to do was to ignore the spatial
ordering, that is, to neglect the long-
range ordering of spins in space, if
any, and instead to look for long-
range order in time. Richard Palmer
later named this concept "nonergo-
dicity" because it means, when pres-
ent, that the system does not explore
all possible states in the course of
time. As the measure of long-range
order in time, we introduced q, which
is the average correlation between a
spin S, measured at one time and the
same spin measured a macroscopic
time t later. The equations are

q = lim q(t)
(—00

First we did a little physical calcula-
tion of the transition temperature
below which q became nonzero. One
separates out one of the sites, say i,
and assumes that all the neighboring
sites have a finite value q0 of the "spin
glass order parameter" q. Then one
calculates the correlation enforced on
site i by the effective fields due to the
other sites, and finally one averages it
over all sites i in the sample. For self-
consistency, the order parameter thus
calculated must have the value q0
initially assumed for sites that are
neighbors of i. The order parameter
we calculated,

9o = «S[(0)-S,(oo)>ave>aveoverl

had a nonzero solution below a cer-
tain Tc. (The subscript "ave" stands
for the statistical mechanics average
over thermal fluctuations.)

Much more devious is Sam's so-
called replica method of calculating
thermodynamic properties. To do
thermodynamics properly, one must
average extensive quantities such as
free energy and entropy. These are
all derivable from the logarithm of
the partition function

which grows exponentially with the
size of the system. It is dangerous—in
fact wrong—to average the partition
function in random systems like the
spin glass. This is because the parti-
tion function fluctuates too much:
Special configurations, such as re-
gions where all the JIJ's are acciden-
tally positive, will dominate its aver-
age value.

The key point of principle that
makes studies of the spin glass and
similar systems difficult problems is
this: They are "quenched" random
systems, with the values of JtJ fixed
for all time by the conditions of
preparation of the sample. But we
want to average over macroscopic
samples, in which many different
configurations of Ju 's occur, in such a
way that the average represents the
behavior of a typical system and is
the proper "extensive" or "intensive"
thermodynamic quantity that varies
sensibly with the size of the system.
Sam recalled the obvious identity

In Z = lim
m-0

izr -1

The necessary average is then that of
the m-th power of Z, not of its log; but
when m is small this is no easier.

Now we do an outrageous thing:
We note that the average of Zm for
m = 1,2,3,4,... is calculable because
it is the average of an exponential
containing J. For m an integer,

a= 1 IJ
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which is the average over m identical
"replicas" of the system. If

this integration is easily done. It
gives rise to the following type of
statistical problem:

This is no longer a random problem,
but a regular one. It is more difficult,
however, because it is biquadratic in
spins. It can be solved in mean-field
theory—assuming that S° and S° are
uncorrelated (correlation only gives
terms of order m2) but that Sf and Sf
are correlated. It can also occasional-
ly even be solved by renormalization-
group methods. But one has the
awful problem of extrapolating from
all positive integral values of m to
small m. In principle it is not rigor-
ous to take the limit as m goes to 0
when the function is known only for
integral values of m. In practice,
however, it turns out to be easy since
one keeps only terms of order m.
What is more, so far none of the real
difficulties encountered in the spin
glass theory seem to have come from
failure of the mathematical exten-
sion torn—0! Recently Haim Sompo-
linsky (Phys. Rev. B 25, 6860, 1982)
and Miguel Virasoro (Europhys. Lett.
1, 77, 1986) have given us some ideas
about why that is true.

In the mean-field solution the "Ed-
wards-Anderson order parameter" q
reappears in a new guise, as a replica-
replica correlation function

qaB = <Sf -Sf>
Thus in some real sense the different
replicas represent very widely sepa-
rated instants in time at which we
choose to look at the same system.

Sure enough, the mean-field theory
we worked out showed a nice sharp
cusp in the susceptibility, in qualita-
tive agreement with experiment, and
weakly nonlinear behavior, qualita-
tively correct but too small. Unfortu-
nately it also gives a cusp in the
specific heat, which to this day has
never been seen, and which is surely
unphysical for real, finite-dimension-
al spin glasses. Nonetheless the re-
sult, giving a sharp freezing transi-
tion and describing a true nonergo-
dicity, seemed sufficiently promising
that we felt that the replica method-
ology was the doorway into the prob-
lem and that final solutions were just
around the corner.

Little did we know! See next time,
when I reveal the Negative-Entropy
Catastrophe. •
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