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The birth of topological insulators
Joel E. Moore1,2

Certain insulators have exotic metallic states on their surfaces. These states are formed by topological 
effects that also render the electrons travelling on such surfaces insensitive to scattering by impurities. Such 
topological insulators may provide new routes to generating novel phases and particles, possibly finding uses 
in technological applications in spintronics and quantum computing.

Many aspects of condensed-matter physics are concerned with 
understanding how order emerges when a very large number of simple 
constituents, such as ions, magnetic moments or electrons, interact with 
each other. In ordered phases such as crystals and magnets, the order is 
described through symmetry breaking: in a crystal, ions are arranged 
periodically owing to their electrostatic interactions, thereby breaking 
the continuous symmetry of space under rotations and translations; 
in typical magnets, some of the rotational symmetry of spin space is 
broken, together with the time-reversal symmetry.

A major discovery in the 1980s was that electrons that are confined 
to two dimensions and subject to a strong magnetic field show a com-
pletely different, topological, type of order, which underlies the quantum 
Hall effect. Consequences of this order include dissipationless transport 
and emergent particles with fractional charge and statistics. One of the 
important discoveries of the past few years is that topological order also 
occurs in some three-dimensional (3D) materials; in these materials, the 
role of the magnetic field is assumed by the mechanism of spin–orbit 
coupling, an intrinsic property of all solids. These materials have been 
named topological insulators because they are insulators in the ‘bulk’ 
but have exotic metallic states present at their surfaces owing to the 
topological order.

In this Perspective article, I provide an overview of the basic concepts 
underlying topological insulators and recent studies of these remark-
able new materials. After an explanation of what makes some insulators 
‘topological’ and a brief history of this rapidly developing field, I discuss 
recent advances made in experiments on topological insulators — for 
both bulk and nanostructured materials — and in the theoretical under-
standing of these materials. I conclude by explaining why many research 
groups are seeking to use topological insulators to generate new particles 
and phases, which has possible applications to quantum computing.

A primer on topological insulators
The easiest way to describe a topological insulator is as an insulator 
that always has a metallic boundary when placed next to a vacuum 
or an ‘ordinary’ insulator. These metallic boundaries originate from 
topological invariants, which cannot change as long as a material 
remains insulating. An intuitive illustration showing why the metallic 
surfaces exist is presented in Fig. 1a: a trefoil knot is used to represent 
a topological insulator and a closed loop to represent an ordinary one. 
Topology is a branch of mathematics that studies the properties of 
objects that are invariant under smooth deformations, a classic exam-
ple being a doughnut transforming into a coffee cup. In contrast to the 
doughnut/coffee cup pair, the trefoil knot and the closed loop have 
different topological invariants and thus neither can be deformed to 
become the other, no matter how the string (or wire) is stretched or 

twisted, without being cut. Nevertheless, these invariants do change 
in crossing the interface between topological and ordinary insulators, 
so by contradiction the surface cannot remain insulating, which is 
analogous to cutting the knot.

In a topological insulator, the component that is ‘knotted’ is the 
electron’s wavefunction as it moves through momentum space. Associ-
ated with this knotting are topological invariants (usually expressed as 
integrals involving the wavefunction) that cannot change as long as the 
material remains insulating. Even when the boundary between ordi-
nary insulators and topological insulators is atomically sharp and the 
continuous description using topology might not seem to be applica-
ble, there are nevertheless metallic delocalized wavefunctions at this 
boundary. In Fig. 1b, the simplest case of knotting in a 3D electronic 
structure is illustrated: for one occupied electronic band and one empty 
one, each point in 3D momentum space is associated with a unit vector 
representing the occupied state, and the Hopf map shown in Fig. 1b is a 
topologically non-trivial example.

Lessons from the past
The appearance of the unusual metal when the topology changes at a 
surface is the main experimental signature that an insulator is indeed 
topological. To explain the properties of the insulator, I will begin with 
a short review of the historical developments that led to the theoretical 
predictions that topological insulators exist. A simpler version of this 
metal occurs at the edge of a quantum Hall droplet, the first reported 
example of two-dimensional (2D) topological order. Quantum Hall 
edges are perfect quantum wires wrapping around the insulating droplet 
(Fig. 2a), and they result from the topological properties of the elec-
tronic wavefunctions when the constituent electrons are confined to 
two dimensions and subject to a strong magnetic field perpendicular 
to the plane to which the electrons are confined (see page 187 for more 
details on the quantum Hall effect).

Work on topological insulators grew out of the idea that the quantum 
Hall effect that arises in such 2D systems in the presence of a magnetic 
field could occur even for electrons moving on a lattice in the absence 
of a macroscopic magnetic field1. Instead of being driven by such a mag-
netic field, it was predicted in the late 1980s that electrons could, in 
principle, form a quantum Hall state driven by forces that result from 
their motion through the crystal lattice. Recent developments are based 
on spin–orbit coupling, a relativistic effect in which the spin and orbital 
angular momentum degrees of freedom of electrons are coupled; this 
coupling causes electrons that are moving through a crystal to feel a 
spin-dependent force, even in non-magnetic materials.

Although spin–orbit coupling does not have the symmetry required 
to induce the quantum Hall effect (that is, it does not break time-reversal 
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symmetry as an applied magnetic field would), in simplified models 
introduced in around 2003 it can lead to a quantum spin Hall effect, 
in which electrons with opposite spin angular momentum (commonly 
called spin up and spin down) move in opposite directions around the 
edge of the droplet in the absence of an external magnetic field2 (Fig. 2b). 
These simplified models were the first steps towards understanding 
topological insulators. But it was unclear how realistic the models were: 
in real materials, there is mixing of spin-up and spin-down electrons, 
and there is no conserved spin current. It was also unclear whether the 
edge state of the droplet in Fig. 2b would survive the addition of even 
a few impurities.

In 2005, a key theoretical advance was made by Kane and Mele3. 
They used more realistic models, without a conserved spin current, 
and showed how some of the physics of the quantum spin Hall effect 
can survive. They found a new type of topological invariant that could 
be computed for any 2D material and would allow the prediction of 
whether the material had a stable edge state. This allowed them to show 
that, despite the edge not being stable in many previous models, there are 
realistic 2D materials that would have a stable edge state in the absence of 
a magnetic field; the resultant 2D state was the first topological insulator 
to be understood. This non-magnetic insulator has edges that act like 
perfectly conducting one-dimensional electronic wires at low tempera-
tures, similar to those in the quantum Hall effect.

Subsequently, Bernevig, Hughes and Zhang made a theoretical 
prediction that a 2D topological insulator with quantized charge con-
ductance along the edges would be realized in (Hg,Cd)Te quantum 
wells4. The quantized charge conductance was indeed observed in this 
system, as a quantum-Hall-like plateau in zero magnetic field, in 2007 
(ref. 5). These experiments are similar to those on the quantum Hall 
effect in that they require, at least so far, low temperature and artificial 
2D materials (quantum wells), but they differ in that no magnetic field 
is needed.

Going 3D
The next important theoretical development, in 2006, was the 
realization6–8 that even though the quantum Hall effect does not general-
ize to a genuinely 3D state, the topological insulator does, in a subtle way. 
Although a 3D ‘weak’ topological insulator can be formed by layering 
2D versions, similar to layered quantum Hall states, the resultant state 
is not stable to disorder, and its physics is generally similar to that of the 
2D state. In weak topological insulators, a dislocation (a line-like defect 

in the crystal) will always contain a quantum wire like that at the edge 
of the quantum spin Hall effect (discussed earlier), which may allow 2D 
topological insulator physics to be observed in a 3D material9.

There is also, however, a ‘strong’ topological insulator, which has a 
more subtle relationship to the 2D case; the relationship is that in two 
dimensions it is possible to connect ordinary insulators and topologi-
cal insulators smoothly by breaking time-reversal symmetry7. Such a 
continuous interpolation can be used to build a 3D band structure that 
respects time-reversal symmetry, is not layered and is topologically non-
trivial. It is this strong topological insulator that has protected metallic 
surfaces and has been the focus of experimental activity.

Spin–orbit coupling is again required and must mix all components of 
the spin. In other words, there is no way to obtain the 3D strong topologi-
cal insulator from separate spin-up and spin-down electrons, unlike in 
the 2D case. Although this makes it difficult to picture the bulk physics of 
the 3D topological insulator (only the strong topological insulator will be 
discussed from this point), it is simple to picture its metallic surface6.

The unusual planar metal that forms at the surface of topological 
insulators ‘inherits’ topological properties from the bulk insulator. 
The simplest manifestation of this bulk–surface connection occurs at 
a smooth surface, where momentum along the surface remains well 
defined: each momentum along the surface has only a single spin state 
at the Fermi level, and the spin direction rotates as the momentum 
moves around the Fermi surface (Fig. 3). When disorder or impurities 
are added at the surface, there will be scattering between these surface 
states but, crucially, the topological properties of the bulk insulator do 
not allow the metallic surface state to vanish — it cannot become local-
ized or gapped. These two theoretical predictions, about the electronic 
structure of the surface state and the robustness to disorder of its metallic 
behaviour, have led to a flood of experimental work on 3D topological 
insulators in the past two years.

Experimental realizations
The first topological insulator to be discovered was the alloy BixSb1−x, 
the unusual surface bands of which were mapped in an angle-resolved 
photoemission spectroscopy (ARPES) experiment10,11. In ARPES exper-
iments, a high-energy photon is used to eject an electron from a crystal, 
and then the surface or bulk electronic structure is determined from an 
analysis of the momentum of the emitted electron. Although the surface 
structure of this alloy was found to be complex, this work launched a 
search for other topological insulators.

Figure 1 | Metallic states are born when a surface unties ‘knotted’ electron 
wavefunctions. a, An illustration of topological change and the resultant 
surface state. The trefoil knot (left) and the simple loop (right) represent 
different insulating materials: the knot is a topological insulator, and the 
loop is an ordinary insulator. Because there is no continuous deformation 
by which one can be converted into the other, there must be a surface where 
the string is cut, shown as a string with open ends (centre), to pass between 
the two knots; more formally, the topological invariants cannot remain 

defined. If the topological invariants are always defined for an insulator, 
then the surface must be metallic. b, The simplest example of a knotted 3D 
electronic band structure (with two bands)35, known to mathematicians as 
the Hopf map. The full topological structure would also have linked fibres 
on each ring, in addition to the linking of rings shown here. The knotting 
in real topological insulators is more complex as these require a minimum 
of four electronic bands, but the surface structure that appears is relatively 
simple (Fig. 3).
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For a topological insulator to form, spin–orbit coupling must be strong 
enough to modify the electronic structure significantly, which suggests 
that heavy-element, small-bandgap semiconductors are the most promis-
ing candidates. This suggestion stems from two points. First, spin–orbit 
coupling is a relativistic effect and is only strong for heavy elements. Sec-
ond, if the bandgap is much larger than the energy scale of spin–orbit 
coupling, then spin–orbit coupling will not be able to change the phase. 
The search for topological insulators culminated in the recent discovery 
of topological insulator behaviour in Bi2Se3 and Bi2Te3 (refs 12–14). These 
‘next-generation’ materials both show topological insulator behaviour up 
to higher temperatures than does the original material (BixSb1−x), with 
bulk bandgaps of more than 0.1 eV, and have the simplest surface state 
that is allowed. Beyond providing further confirmation of the theory 
of topological insulators, the simplicity of the surface state in these 
materials opens up the possibility of many experiments, some of which 
are described below. Furthermore, the large bandgap means that these 
experiments do not need to be carried out at extremely low temperatures. 
The main remaining complication about these materials, especially when 
using experimental techniques that do not distinguish directly between 
bulk states and surface states (unlike ARPES), is that in the bulk state they 
have residual conductivity arising from impurities.

A graphene lookalike
Figure 3 shows the measured surface state of Bi2Se3 and a theoretical 
idealization of its state, including the electron spin. The surface state of 
the next-generation topological insulators is closely related to the Dirac 
electronic structure of graphene, which has a linear energy–momentum 
relationship like that of a relativistic particle (and is known as a Dirac 
cone). Graphene, which consists of a single layer of carbon atoms, has 
been an extremely active subject of research in recent years15: it is inter-
esting both structurally, because it is the most 2D material possible, and 
electronically, because of its linear energy–momentum relationship. The 
main difference between the surface of a topological insulator and that 
of graphene is that the topological insulator has only one Dirac point (or 
valley) and no spin degeneracy, whereas graphene has two Dirac points 
and is spin degenerate. This difference has far-reaching consequences, 
including the possibility of generating new particles that have applica-
tions in quantum computing.

Another remarkable consequence of the absence of the extra 
degeneracies was detected by scanning tunnelling microscopy experi-
ments16–18: the interference patterns near defects or steps on the surface 
show that electrons are never completely reflected when scattered. Even 
if the disorder becomes much stronger and a description in terms of 
well-separated scattering events is invalid, the surface remains metallic19. 
This protection of the surface metal from Anderson localization (that 
is, formation of an insulating state as a result of strong disorder20) is one 
of the key differences between the surface of the topological insulator 
and the ‘accidental’ surface states present in other materials, such as the 
noble metals. Beyond just being stable to disorder, it is now understood 
that the topological insulator, at least in some 2D models, forms as a 
result of disorder21,22. In graphene, there is an approximate version of 
this protection if the scattering has a very smooth potential, but real 
graphene is likely to become localized with strong disorder.

There was, however, initially a disadvantage in using a topological 
insulator for some purposes as opposed to graphene. In graphene, the 
chemistry of the carbon atoms naturally locates the Fermi level at the 
Dirac point (that is, the point at which the two cones intersect), where 
the density of states vanishes. This means that the density of carriers in 
graphene is highly tunable using an applied electrical field and allows 
applications of graphene in both basic science and microelectronics. The 
surface Fermi level of a topological insulator does not have any particu-
lar reason to sit at the Dirac point; however, through a combination of 
surface and bulk chemical modification, tuning to the Dirac point in 
Bi2Se3 was recently demonstrated23. This control of chemical potential is 
important for applications, as well as for a proposal to create a topologi-
cal exciton condensate by biasing a thin film of topological insulator24. 
This condensate is a superfluid state of electron–hole pairs that would 
have a bound electronic state around superfluid vortices.

Materials challenges
Two recent advances in the nanostructuring of topological insulators 
also deserve a mention. Nanoribbons of Bi2Se3 have been synthesized, 
allowing observation of the Aharonov–Bohm effect in the metallic 
surface state when a magnetic field is applied along the long direction 
of the nanoribbon25, and molecular beam epitaxy has been used to 
grow thin films of Bi2Se3 with controlled thickness down to a single 
unit cell26. Such nanostructures are essential for many of the proposed 
applications of topological insulators to spintronics and other fields. 
For example, the spin structure in Fig. 3 means that a charge current 
along the surface of the topological insulator automatically yields a 
non-zero spin density; a heterostructure that combines a topologi-
cal insulator with a ferromagnet could allow the ferromagnet to be 
switched by passing a current through the topological insulator’s sur-
face, and this would be a new type of spin torque device for magnetic 
memory applications27. The next important steps are to carry out 
direct transport and optical experiments on the metallic surface state 
to measure its conductivity and spin properties, and for these experi-
ments improved materials with reduced residual bulk conductivity 
might be required.

Figure 2 | Topological order in two dimensions. a, Edge of an integer 
quantum Hall state. The electrons (e–) are confined to a 2D insulating 
droplet with a metallic edge. Along the edge, electrons propagate only in 
one direction, which is determined by the sign of the applied magnetic 
field perpendicular to the droplet. One integer, n, the topological invariant, 
determines the Hall conductance and the number of propagating edge 
modes. b, Edge of an idealized quantum spin Hall state (that is, a 2D 
topological insulator). Along the edge, spin-up electrons move clockwise, 
whereas spin-down electrons move anticlockwise. Spin-up and spin-down 
electrons are independent and are in oppositely directed quantum Hall 
states. An applied electrical field generates a spin current but no charge 
current. Each droplet is surrounded by an ordinary insulator.
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A nascent field
Several experiments that are under way are based on a different picture 
of the essential properties of a topological insulator, a picture that is con-
nected to particle physics research from the 1980s. It has been known 
for many years that the magnetic field and electric field are coupled in 
the interior of some insulators. Topological insulators contain a special 
type of such coupling that is quantized and was originally discussed by 
particle physicists who were analysing the coupling of an axion particle 
to ordinary electric and magnetic fields.

Particle physics and superfluidity
Condensed-matter physicists often seek to define a phase of matter 
in terms of its response to some influence. For example, a solid is a 
material with a non-zero stiffness in response to applied shear force, 
and a superconductor is defined in terms of the Meissner effect (that 
is, by its expulsion of applied magnetic fields). Such definitions are 
connected directly to experimentation and are independent of details 
on the microscopic level. It turns out that the defining response of a 
topological insulator was almost worked out in the 1980s in an effort to 
understand the properties of axion electrodynamics, which differs from 
ordinary electrodynamics by the addition to the Lagrangian of a term 
that is proportional to the scalar product of the electric field and the 
magnetic field, E•B (ref. 28). There are only two values of the co efficient 
of this term that are compatible with time-reversal symmetry, and these 
correspond to ordinary insulators and topological insulators. Hence, 
topological insulators are materials whose internal structure generates 
the non-zero value of the axion-like coupling, in the same way that 
insulators modify the dielectric constant, which is the coefficient of E2 
in the Lagrangian29.

There are many predicted consequences of this term30,31, including 
monopole-like behaviour and surface states with continuously vari-
able Hall conductivity. The most important for applications may be the 
simple magnetoelectric effect in which an applied electrical field gen-
erates a magnetic dipole and vice versa. The potential advantage of the 
magnetoelectric effect in topological insulators over that in multiferroic 
materials32 is an increase not in strength but instead in speed and repro-
ducibility without fatigue, because this effect results purely from orbital 
motion of the electrons. Whether a given material is a topological insu-
lator can be theoretically defined simply by asking how much its bulk 
polarization changes in an applied magnetic field, and measurements 
of this magnetoelectric polarizability in other materials suggest that it 

should be possible to observe the effect in topological insulators.
Another recent theoretical advance was understanding how phases 

similar to the 3D topological insulator might appear in systems with 
different symmetries than those of the non-magnetic solids discussed 
above33–35. Finding experimental examples of these other types of topo-
logical insulator and superconductor would be a major accomplish-
ment. Work in this area also led to a reconsideration of the properties of 
superfluid 3He, in which neutral fermionic atoms form Cooper pairs: the 
quasiparticles in this superfluid have some remarkable properties that 
are closely connected to those of electrons in the topological insulator, 
and finding direct experimental signatures of these quasiparticles is an 
important challenge.

Emergent particles and quantum computing
The interface between a topological insulator and a superconductor 
may allow the creation of an ‘emergent’ particle that neither material 
supports by itself. Like any other metal, the metallic surface of a topo-
logical insulator becomes superconducting, by way of the proximity 
effect, when placed next to an ordinary superconductor. However, the 
superconducting surface of a topological insulator is novel: if a vortex 
line runs from the superconductor into the topological insulator, then 
a zero-energy Majorana fermion is trapped in the vicinity of the vor-
tex core36,37. Unlike vortex core states in ordinary superconductors, the 
Majorana fermion has quantum numbers that differ from those of an 
ordinary electron: it is its own antiparticle, is electrically neutral and 
is, in most respects, ‘half ’ of an ordinary electron38. There are several 
reasons for the excitement about this proposal and others of a simi-
lar spirit39. First, these proposals may allow a Majorana fermion to be 
observed directly, a long-sought goal in particle physics and condensed-
matter physics. Second, Majorana fermions are one step towards a topo-
logical quantum computer, which would be exceptionally well protected 
from errors40 because the quasiparticles obey a special kind of quantum 
statistics that is non-Abelian (for a more in-depth discussion of non-
Abelian states of matter, see page 187). More complex materials might 
even allow Majorana fermions as point excitations in the bulk of the 
3D material41.

More generally, there are several aspects of the topological order in 
quantum Hall states that have not yet been realized in topological insu-
lators, and the most important is the emergence of quasiparticles with 
modified charge and statistics. The traditional wellspring of topological 
order, the 2D electron gas in a strong magnetic field, has not dried up; 

Figure 3 | Signatures of the exotic metallic surface states in topological 
insulators. a, The electronic structure of Bi2Se3, as measured by 
ARPES. Measured energy electron energy, EB, is plotted against electron 
momentum, ky. High intensity (red and yellow areas) indicates a non-zero 
electronic density of states. The surface bands crossing the bulk bandgap 
enclose a single Dirac point at the Brillouin-zone centre (Γ–   ), which is the 
signature that this material is a topological insulator. M— indicates the 
centre of an edge of the Brillouin zone, and the path in the Brillouin zone 

is indicated by white arrows. The direction of electron spin is indicated by 
blue arrows. (Panel modified, with permission, from ref. 12; data taken 
from refs 12 and 23.) b, Theoretical idealization of the electronic structure 
of Bi2Se3, showing the rotation of the spin degree of freedom (red arrows) 
as an electron (with energy E) moves around the Fermi surface (with 
Fermi energy EF). Scattering of the surface electrons by non-magnetic 
disorder will modify the details of the electronic wavefunctions but will not 
eliminate the metallic surface.
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recent results from studies of this gas include the first observation of 
the fractional quantum Hall effect in graphene and suggest the possible 
observation of non-Abelian statistics in interferometry experiments. 
Topological states have also been proposed to occur in frustrated spin 
systems (such as those discussed on page 201). The variety of topological 
phenomena observed in semiconductor heterostructures over the past 
three decades suggests that the topological insulator materials that have 
been uncovered so far are just the first examples and that new types of 
topological order still await discovery.

Looking forward
The recent discovery of topological insulators, like other advances in 
basic condensed-matter physics, allows new applications that build on 
our new understanding. The unusual metallic surfaces of these insula-
tors may result in new spintronic or magnetoelectric devices. Further-
more, in combination with superconductors, topological insulators 
could lead to a new architecture for topological quantum bits. These 
insulators have already had a considerable impact on ‘pure’ condensed-
matter physics, making it clear that topological effects — which were 
long thought to be restricted to low temperatures, reduced dimensional-
ity and high magnetic field — can determine the physics of seemingly 
ordinary bulk materials under ordinary conditions. ■
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