
Phil Anderson And Gauge Symmetry Breaking

Edward Witten

Institute for Advanced Study

Princeton, NJ 08540

In this lecture, I am going to talk primarily about just one of the dozens of important papers

that Phil Anderson has written. This paper was written just a little over 51 years ago, in 1962.

I will set it in context by telling a little about the work that Julian Schwinger had done shortly

before, and also we will recall Phil’s earlier work on superconductivity that helped to set the stage.

Then we will take a trip through later developments that occurred through the rest of the 1960’s

and beyond, and we will conclude with some observations about the present. (I won’t talk about

some early precursors such as Stueckelberg in 1938, but later we will get to the model introduced

by Landau and Ginzburg in 1950.)

The title page of Phil’s paper, which is called “Plasmons, Gauge Invariance, and Mass,” and was

received on November 8, 1962, can be found in fig. 1. As one can see, Phil starts out by citing the

work of Julian Schwinger. The reference is to two very short papers that Schwinger had written,

also published in 1962. To understand Phil’s work, we should first take a look at Schwinger’s

contributions.

In the first paper (fig. 2), Schwinger argues somewhat abstractly that – in contrast to what we

are familiar with in the case of electromagnetism – gauge invariance does not imply the existence

of a massless spin one particle. A couple of things are worth noting here, apart from the fact that

Schwinger was forward-thinking to even ask the question. One is that Schwinger was motivated

by the strong interactions (there is no mention of weak interactions in the paper). The question

he asks in the first paragraph is whether the conservation law of baryon number could be a gauge

symmetry. There is an obvious problem, which is that we do not see a massless spin 1 particle

coupled to baryon number. So Schwinger asked whether it is possible for baryon number (or

something like baryon number) to be conserved because of a gauge symmetry, without the gauge

symmetry producing a massless spin 1 particle.

The answer that Schwinger proposes – even in the first sentence of the abstract – is that gauge

invariance does not necessarily imply the existence of a massless spin 1 particle if the coupling

is large. His idea is that there is no massless particle if there is a pole in the current-current

correlation function hJµ(q)J⌫(�q)i. The role of strong coupling is supposed to be to generate this

pole. Thus, QED is weakly coupled, and has no such pole; Schwinger’s point of view is that in a

suitable gauge-invariant theory, strong coupling e↵ects might produce such a pole.
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One gets
k 0k.o-=m'

or

We have also
4&„(+A) =-,' Tr(a "Aa,At).

(k.a)"' is the Hermitian square root of k a.
The relation between the unimodular matrices and

the restricted Lorentz transformations is given by

Acr„A~=A„"fr„,

~ Tr(a "o.r) =g,",
O.„~=CO.„C ' or 0„=Co.„~C '.

For any 2 by 2 matrix M the relation CM~C '
=M ' detM is an identity.
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Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. %'e show that
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger's idea. It is also shown that Schwinger's criterion that the vector field m&0 implies that the matter
spectrum before including the Yang-Mills interaction contains m=0, but that the example of supercon-
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these
ideas and the zero-mass difhculty in theories with broken symmetries are given.

ECKXTLY, Schwinger' has given an argument
strongly suggesting that associating a gauge

transformation with a local conservation law does not
necessarily require the existence of a zero-mass vector
boson. For instance, it had previously seemed impossible
to describe the conservation of baryons in such a
manner because of the absence of a zero-mass boson
and of the accompanying long-range forces. ' The
problem of the mass of the bosons represents the major
stumbling block in Sakurai's attempt to treat the
dynamics of strongly interacting particles in terms of
the Yang-Mills gauge fields which seem to be required
to accompany the known conserved currents of baryon
number and hypercharge. ' (We use the term "Yang-
Mills" in Sakurai's sense, to denote any generalized
gauge field accompanying a local conservation law. )
The purpose of this article is to point out that the

familiar plasmon theory of the free-electron gas ex-
emplifies Schwinger's theory in a very straightforward
manner. In the plasma, transverse electromagnetic
waves do not propagate below the "plasma frequency, "
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas.
At and above this frequency, three modes exist, in
close analogy (except for problems of Galilean invari-
ance implied by the inequivalent dispersion of longi-
tudinal and transverse modes) with the massive vector
boson mentioned by Schwinger. The plasma frequency
' J. Schwinger, Phys. Rev. 125, 397 (1962).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).
3 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1961}.

is equivalent to the mass, while the 6nite density of
electrons leading to divergent "vacuum" current
fluctuations resembles the strong renormalized coupling
of Schwinger's theory. In spite of the absence of
low-frequency photons, gauge invariance and particle
conservation are clearly satisfied in the plasma.
In fact, one can draw a direct parallel between the

dielectric constant treatment of plasmon theory4 and
Schwinger's argument. Schwinger comments that the
commutation relations for the gauge 6eld A give us
one sum rule for the vacuum fluctuations of A, while
those for the matter field give a completely independent
value for the Auctuations of matter current j. Since j
is the source for A and the two are connected by 6eld
equations, the two sum rules are normally incompatible
unless there is a contribution to the A rule from a free,
homogeneous, weakly interacting, massless solution of
the 6eld equations. If, however, the source term is
large enough, there can be no such contribution and
the massless solutions cannot exist.
The usual theory of the plasmon does not treat the

electromagnetic field quantum-mechanically or discuss
vacuum Quctuations; yet there is a close relationship
between the two arguments, and we, therefore, show
that the quantum nature of the gauge field is irrelevant.
Our argument is as follows:
The equation for the electromagnetic 6eld is

p'A„= (k'—(o')A„(k,ai) = 4~j„(k,~d).
' P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).

Figure 1. The first page of Phil Anderson’s paper on gauge symmetry breaking, received
November 8, 1962.

In Schwinger’s second paper (fig. 3), he gives a concrete example of gauge invariance not implying

the existence of a massless spin 1 particle. The example is based on a remarkable exact solution,

not assuming weak coupling.

The model Schwinger solved was simply 1 + 1-dimensional Quantum Electrodynamics, with

electrons of zero bare mass. The action is

I = � 1

4e2

Z
d2xFµ⌫F

µ⌫ +

Z
d2x  ̄i /D .

Nowadays this model – which is known as the Schwinger model – is usually solved simply and

understandably (but surprisingly) by “bosonization,” which converts it to a free theory (of the

gauge field Aµ and a scalar field �) with all the properties that Schwinger claimed. Schwinger’s

approach to solving it was more axiomatic.

The model is actually considered an important example that illustrates quite a few things, and

not only what Schwinger had in mind. For instance, it is also used to illustrate the physics of a
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It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associ-
ated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper under-
standing of nucleonic charge conservation as a manifestation of a gauge invariance, ~vithout the obvious
confIict ~ith experience that a massless particle entails.

&~OES the requirement of gauge invariance for a.
vector Geld coupled to a dynamical current imply

the existence of a corresponding particle with zero
mass? Although the answer to this question is invari-
ably given in the affirmative, ' the author has become
convinced that there is no such necessary implication,
once the assumption of weak coupling is removed. Thus
the path to an understanding of nucleonic (baryonic)
charge conservation as an aspect of a gauge invariance,
in strict analogy with electric charge, ' may be open for
the Grst time.
One potential source of error should be recognized at

the outset. A gauge-invariant system is not the con-
tinuous limit of one that fails to admit such an arbitrary
function transformation group. The discontinuous
change of invariance properties produces a correspond-
ing discontinuity of the dynamical degrees of freedom
and of the operator commutation relations. No reliable
conclusions about the mass spectrum of a gauge-
invariant system can be drawn from the properties of
an apparently neighboring system, with a smaller in-
variance group. Indeed, if one considers a vector Geld
coupled to a divergenceless current, where gauge
invariance is destroyed by a so-called mass term with
parameter mt, it is easily shown' that the mass spectrum
must extend below mp. The lowest mass value will
therefore become arbitrarily small as mo approaches
zero. Nevertheless, if m, o is exactly zero the commutation
relations, or equivalent properties, upon which this
conclusion is based become entirely different and the
argument fails.
If invariance under arbitrary gauge transformations

is asserted, one should distinguish sharply between
numerical gauge .functions and operator gauge func-
tions, for the various operator gauges are not on the
same quantum footing. In each coordinate frame there
is a unique operator gauge, characterized by three-
dimensional transversality (radiation gauge), for which
one has the standard operator construction in a vector
space of positive norm, with a physical probability
interpretation. When the theory is formulated with the
aid of vacuum expectation values of time-ordered
operator products, the Green's functions, the freedom
of formal gauge transformation can be restored. ' The
' For example, J. Schwinger, Phys. Rev. 75, 651 (1949).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).' K. Johnson, Nuclear Phys. 25, 435 (1961).' J. Schwinger, Phys. Rev. 115, '121 (1959).

A„P(P)=B(m') g„.—(P.
~.+P.~,) (~P)+P.P

P'+(&P)'

Here B(m') is a real non-negative number. It obeys the
sum rule

1= dm' B(m')

which is a full expression of all the fundamental equal-
time commutation relations.
The Geld equations supply the analogous construction

for the vacuum expectation value of current products
(j„(x)j„(x')), in terms of the non-negative matrix

j"(P)=m'B( ')(P»P g"P'). —
The factor m' has the derisive consequence that m=0
is not contained in the current vector's spectrum of
vacuum fluctuations. The latter determines B(m') for
ns&0, but leaves unspeciGed a possible delta function
contribution at m=0,

B(m') =Bob(m')+Bi(m')
The non-negative constant 80 is then Gxed by the sum
rule,

1=Be+ dms Bi(m').
0

Green's functions of other gauges have more compli-
cated operator realizations, however, and will generally
lack the positiveness properties of the radiation gauge.
Let us consider the simplest Green's function associ-

ated with the field A „(x),which can be derived from the
unordered product

(A„(x)A„(x'))

(dP) .a'vt* "&dm-s st+(p)b(p'+m')A„, (p),
(2or)s

where the factor +st(p)8(p'+ m) enforces the spectral
restriction to states with mass m& 0 and positive energy.
The requirement of non-negativeness for the matrix
A„„(p) is satisfied by the structure associated with the
radiation gauge, in virtue of the gauge-dependent asym-
metry between space and time (the time axis is specified
by the unit vector rt„):

Figure 2. The first of Schwinger’s two papers on gauge symmetry breaking.
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Figure 3. Schwinger’s second paper on gauge symmetry breaking, in which he introduced
and solved what is now called the Schwinger model.

gauge theory ✓-angle, and after a small perturbation to give the electron a bare mass, it becomes

a model of confinement of charged particles. However, although I was not in physics at the time, I

suspect that Schwinger’s extremely short paper mystified many of his contemporaries. His way of

solving the model probably was a little abstract, and the whole thing probably seemed to revolve

around peculiarities of 1 + 1 dimensions.
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Schwinger’s concept was summarized in the last sentence of his first paper: “the essential point

is embodied in the view that the observed physical world is the outcome of the dynamical play

among underlying primary fields, and the relationship between these fundamental fields and the

phenomenological particles can be comparatively remote, in contrast to the immediate correlation

that is commonly assumed.” In other words, in general, there need be no simple relationship

between particles and fields – or in condensed matter physics, between bare electrons and nuclei

and the emergent quasi-particles that give a more useful description at long distances.

Schwinger is saying that the situation that prevails in QED – in which the electron field corre-

sponds to electrons, and the photon field corresponds to photons – results from the fact that this

theory is weakly coupled. In a strongly coupled theory, there might be no simple correspondence

between fields and particles. This was actually a very wise remark, probably putting Schwinger way

ahead of his contemporaries in particle physics. And it is at the core of the way we now understand

the strong interactions.

But Phil Anderson showed that Schwinger was actually not entirely correct about the specific

question he was writing about – how to have gauge invariance without a massless spin one particle.

To be more precise, everything that Schwinger said about strong coupling is true, but it is not the

whole story. As Anderson showed, a weakly coupled vector meson might also acquire a mass, and

here the essence of the matter is not strong coupling but symmetry breaking – the properties of

the vacuum. In fact, Phil expressed a point of view that is quite opposite to Schwinger’s, showing

that not just strong coupling but even quantum mechanics is irrelevant to the problem of how to

have gauge invariance without a massless spin one particle.

Phil’s paper is largely devoted to two examples from well-established physics. He begins by

saying that “the familiar plasmon theory of the free electron gas exemplifies Schwinger’s theory in

a very straightforward manner,” with the plasma frequency, below which electromagnetic waves do

not propagate, playing the role of the vector meson mass for Schwinger. He shows that the usual

analysis of screening in a plasma can be put in close parallel with what Schwinger had said in the

relativistic case. He also observes that the problem of screening in a plasma is usually understood

classically, without invoking quantum mechanics, and deduces that “the quantum nature of the

gauge field is irrelevant” to the question of how to have gauge invariance without a massless vector

particle.

The second part of Phil’s 1962 paper deals with an example that is even more incisive – su-

perconductivity. The background to this was provided by a series of three papers that Phil had

written in 1958 (shown in fig. 4 is the title page of the first of the three papers – which incidentally

is the one he referred to in 1962). In these papers, Phil had analyzed gauge invariance and the

fate of the “Goldstone” boson (the term is ahistorical as Goldstone had not yet formulated his

relativistic theorem) in the BCS theory of superconductivity, showing that this mode combines

with ordinary photons to become a gapped state of spin 1. Thus the electronic state of an ordinary

BCS superconductor is truly gapless.

In the 1962 paper, Phil explains cogently how superconductivity illustrates the phenomenon

described by Schwinger, in a context in which the gauge field is weakly coupled and the physics is

well understood. Much of this paper reads just like what one would explain to a student today.
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Coherent Excited States in the Theory of Superconductivity: Gauge
Invariance and the Meissner Effect

P. W. ANDERSoN
Bell Telephone Laboratories, Murruy Hill, Sew Jersey

(Received January 27, 1958)

We discuss the coherent states generated in the Bardeen, Cooper, and Schrieffer theory of supercon-
ductivity by the momentum displacement operator pu= Z exp(iQ r„).Without taking into account plasma
e8ects, these states are like bound Cooper pairs with momentum AQ and energies lying in the gap, and they
play a central role in the explanation of the gauge invariance of the Meissner effect. Long-range Coulomb
forces recombine them into plasmons with equations of motion unaffected by the gap. Central to the argu-
ment is the proof that the non-gauge-invariant terms in the Hamiltonian of Bardeen, Cooper, and SchrieEer
have an effect on these states which vanishes in the weak-coupling limit.

kr+ks= Q (2)
' M. J. Buckingham, Nuovo cimento 5, 1763 (1957).' Bardeen, Cooper, and Schrie6er, Phys. Rev. 106, 162 (1957);

108, 1175 (1957).The latter we call B.C.S., and we shall follow its
notation as far as possible.' M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951).

4 M. R. Schafroth (private communication). I am indebted to
G. Wentzel for an elegant presentation of these questions in a
series of discussions, to which M. Lax and C. Herring also con-
tributed.' J. Bardeen, Nuovo cimento 5, 1765 (1957).

I. INTRODUCTION
VCKINGHAM' has questioned whether an energy-
gap model of superconductivity„such as that of

Bardeen, Cooper, and Schrieffer, ' can explain the
Meissner effect without violating a certain identity
derived by Schafroth' on the basis of gauge invariance,
and by Buckingham using essentially an f-sum rule.
This identity is what causes the insulator, which also
has an energy gap, to fail to show a Meissner effect;
thus, Buckingham and Schafroth4 argue, a proof of
gauge invariance lies at the core of the problem of
superconductivity, especially since the Hamiltonian
used in B.C.S. is not gauge-invariant.
Bardeen' argues that the matrix elements and energy

states involved in the gauge problem bring in coherent
excitations which will be strongly coupled to the plasma
modes, a high-frequency phenomenon presumably un-
altered by superconductivity. Vnfortunately, while we
6nd that this is indeed exactly the situation, the insula-
tor also often has normal plasma modes. Thus, while the
B.C.S. calculation in the London gauge is probably
entirely correct, and justi6able on physical grounds, it
throws little light on the basic differences between the
three cases—insulator, metal, and superconductor.
We also noticed that the operator which is central in

the gauge problem as well as the plasma theory,

pg ——P„exp(iQ r„)
k, tr Ck+Q, tr Ck, a&

has another interesting property: its separate compo-
nents ck+Q, *ck, , when applied to the B.C.S. ground-
state wave function 4 „create excited pairs of electrons
k~, ks with momentum pairing

instead of zero. The total operator applied to +, leads
to a linear combination of such states, which can be
thought of as equivalent to a Cooper bound state' of a
pair of electrons with nonzero momentum, superimposed
on the B.C.S. ground state.
Our discussion of these problems is based on the

following physical picture: any transverse excitation
involves breaking up the phase coherence over the whole
Fermi surface of at least one pair in the superconducting
ground state, and so involves a loss of attractive binding
energy. This causes the Meissner eGect. Longitudinal
excitations, however, such as those generated by pQ, do
not break up phase coherence in the superconducting
state, and so their energies involve only kinetic energy,
or electromagnetic energy when plasma effects are
included. Thus longitudinal and transverse excitations
are different in the superconductor, in a sense in which
they are not in either the metal or the insulator, and it
turns out to be this difference which allows a gauge-
invariant explanation of the Meissner effect.
We proceed further in two stages. First, we discuss

the Gctitious problem in which the only plasma effect
is the screening of the long-range repulsion. In this stage
gauge invariance requires, and we indeed find, that the
states

+Q=PQ+0 (3)

have energies in the energy gap and proportional to Q'.
In a perfectly gauge-invariant theory, their energy
would be just the kinetic energy

Eo= (O'Q'/2m) (2eg/3m. es), (4)

but we And a small correction going to zero in the weak-
coupling limit. Equation (4) follows from the same f
sum rule which leads to gauge invariance.
There is a fundamental difference, which we demon-

strate, between the ways in which superconducting and
normal substances satisfy this sum rule. Both normal
metals and insulators (leaving out the rather confusing
effects of long-range Coulomb forces which can be
studied later) satisfy this rule with ordinary excitations
in such a way that the more familiar optical sum rule—
L. N. Cooper, Phys. Rev. 104, 1189 (1956).

Figure 4. The first of Anderson’s three papers of 1958 on gauge invariance in the BCS
model of superconductivity.

For example: “the way is now open for a degenerate vacuum theory of the Nambu type without

any di�culties involving either zero-mass Yang-Mills gauge bosons or zero-mass Goldstone bosons.

These two types of bosons seem capable of ‘canceling each other out’ and leaving finite mass bosons

only.” He goes on: “It is not at all clear that the way for a Sakurai theory [with baryon number

as a gauge symmetry] is equally uncluttered. The only mechanism suggested by the present work

(of course, we have not discussed non-Abelian gauge groups) for giving the gauge field mass is

the degenerate vacuum type of theory, in which the original symmetry is not manifest in the

observable domain. Therefore, it needs to be demonstrated that the necessary conservation laws

can be maintained.” In other words, as one would say today, if baryon number is gauged and

spontaneously broken, then baryon number will not be conserved in nature.

And let us look at the end of the paper (fig. 5): “I should like to close with one final remark

on the Goldstone theorem. This theorem was initially conjectured, one presumes, because of

the solid-state analogs, via the work of Nambu and Anderson” (the reference here is to Nambu’s

work on spontaneously broken chiral symmetry and to Anderson’s paper whose title page appears

in fig. 4). He goes on to give various examples, both old (spin waves and phonons) and new

(superconductors and superfluids). And then he writes, “It is noteworthy that in most of these

cases, upon closer examination, the Goldstone bosons do indeed become tangled up with Yang-Mills

gauge bosons and do not in any true sense really have zero mass. Superconductivity is a familiar

example, but a similar phenomenon happens with phonons; when the phonon frequency is as low
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PLASMONS, GAUGE INVARIANCE, AND MASS

product expectation value of the current as

K'(p)=
dm'ePBg(m')

Lplupv gled]&P'—m'

limZ'(P)=(P„P„—g„„p) dm B,(yg)

Thus, (aside from a factor 4x which Schwinger has not
used in his 6eld equation) his criterion is also that the
polarizability n, here expressed in terms of a dispersion
integral, have its maximum possible value, 1.
The polarizability of the vacuum is not generally

considered tobe observable'except in its p dependence
(terms of order p' or higher in E) In fact, we can
remove (11) entirely by the conventional renormaliza-
tion of the field and charge

A, =AZ '~', e„=eZ'", j,= jZ'".
Z, here, can be shown to be precisely

2=1—4n.a'=1— dm'B'(m')
0

Thus, the renormalization procedure is possible for any
merely polarizable "vacuum, " but not for the special
case of the conducting "plasma" type of vacuum. En
this case, no net true charge remains localized in the
region of the dressed particle; all of the charge is
carried "at in6nity" corresponding to the fact, well
known in the theory of metals, that all the charge
carried by a quasi-particle in a plasma is actually on
the surface. Nonetheless, conservation of particles, if
not of bare charge, is strictly maintained. Note that
the situation does not resemble the case of infinite"
charge renormalization because the infinity in the
vacuum polarizability need only occur at p'=0.
Either in the case of the polarizable vacuum or of

the "conducting" one, no low-energy experiment, and
even possibly no high-energy one, seems capable of
directly testing the value of the vacuum polarizability
prior to renormalization. Thus, we conclude that the
plasmon is a physical example demonstrating Schwing-
er's contention that under some circumstances the
Yang-Mills type of vector boson need not have zero
mass. In addition, aside from the short range of forces
and the 6nite mass, which we might interpret without
'We follow here, as elsewhere, the viewpoint of W. Thirring,

Priecip/es of Qeanlgm Electrodynamics (Academic Press Inc. ,
New York, 1958), Chap. 14.

(j (x)j (x'))= dm'epBg(ep) e'&&

(2x)'

xg+(p)g(p'+")(p„p. g;—P').
The Fourier transform of the corresponding retarded
Green's function is our response function:

resorting to Yang-Mills, it is not obvious how to
characterize such a case mathematically in terms of
observable, renormalized quantities.
We can, on the other hand, try to turn the problem

around and see what other conclusions we can draw
about possible Yang-Mills models of strong interactions
from the solid-state analogs. What properties of the
vacuum are needed for it to have the analog of a
conducting response to the Yang-Mills Geld?
Certainly the fact that the polarizability of the

"matter" system, without taking into account the
interaction with the gauge 6eld, is in6nite need not
bother us, since that is unobservable. In physical
conductors we can see it, but only because we can get
outside them and apply to them true electromagnetic
fields, not only internal test charges.
More serious is the implication —obviously physi-

cally from the fact that a has a pole at p'=0—that
the "matter" spectrum, at least for the "undressed"
matter system, must extend all the way to m'=0. In
the normal plasma even the 6nal spectrum extends to
zero frequency, the coupling rather than the spectrum
being a6'ected by the screening. Is this necessarily
always the case? The answer is no, obviously, since the
superconducting electron gas has no zero-mass excita-
tions whatever. In that case, the fermion mass is finite
because of the energy gap, while the boson which
appears as a result of the theorem of Goldstone~ ' and
has zero unrenormalized mass is converted into a
6nite-mass plasmon by interaction with the appropriate
gauge held, which is the electromagnetic held. The
same is true of the charged Bose gas.
It is likely, then, considering the superconducting

analog, that the way is now open for a degenerate-
vacuum theory of the Nambu type' without any
diS.culties involving either zero-mass Yang-Mills gauge
bosons or zero-mass Goldstone bosons. These two
types of bosons seem capable of "canceling each other
out" and leaving 6nite mass bosons only. It is not at
all clear that the way for a Sakurai' theory is equally
uncluttered. The only mechanism suggested by the
present work (of course, we have not discussed non-
Abelian gauge groups) for giving the gauge Geld mass
is the degenerate vacuum type of theory, in which the
original symmetry is not manifest in the observable
domain. Therefore, it needs to be demonstrated that
the necessary conservation laws can be maintained.
I should like to close with one 6nal remark on the

Goldstone theorem. This theorem was initially con-
jectured, one presumes, because of the solid-state
analogs, via the work of Nambu" and of Anderson. "
The theorem states, essentially, that if the Lagrangian

' J. Goldstone, Nuovo Cimento 19, 154 (1961).J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965 (1962).

9 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).' Y. Nambu, Phys. Rev. 117, 648 (1960).» P. W. Anderson, Phys. Rev. 110, 827 (1958).
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possesses a continuous symmetry group under which
the ground or vacuum state is not invariant, that state
is, therefore, degenerate with other ground states. This
implies a zero-mass boson. Thus, the solid crystal
violates translational and rotational invariance, and
possesses phonons; liquid helium violates (in a certain
sense only, of course) gauge invariance, and possesses
a longitudinal phonon; ferro-magnetism violates spin
rotation symmetry, and possesses spin waves; super-
conductivity violates gauge invariance, and would have
a zero-mass collective mode in the absence of long-range
Coulomb forces.
lt is noteworthy that in most of these cases, upon

closer examination, the Goldstone bosons do indeed
become tangled up with Yang-Mills gauge bosons and,
thus, do not in any true sense really have zero mass.
Superconductivity is a familiar example, but a similar
phenomenon happens with phonons; when the phonon
frequency is as low as the gravitational plasma fre-
quency, (4~Gp)"- (wavelength 10' km in normal
matter) there is a phonon-graviton interaction: in that
case, because of the peculiar sign of the gravitational
interaction, leading to instability rather than 6nite

mass. "Utiyama" and Feynman have pointed out that
gravity is also a Yang-Mills field. It is an amusing
observation that the three phonons plus two gravitons
are just enough components to make up the appropriate
tensor particle which would be required for a finite-mass
graviton.
Spin waves also are known to interact strongly with

magnetostatic forces at very long wavelengths, " for
rather more obscure and less satisfactory reasons. We
conclude, then, that the Goldstone zero-mass difFiculty
is not a serious one, because we can probably cancel it
off against an equal Yang-Mills zero-mass problem.
What is not clear yet, on the other hand, is whether it is
possible to describe a truly strong conservation law
such as that of baryons with a gauge group and a
Yang-Mills field having finite mass.
I should like to thank Dr. John R. Klauder for

valuable conversations and, particularly, for correcting
some serious misapprehensions on my part, and Dr.
John C'. Taylor for calling my attention to Schwinger's
work.
"J.H. Jeans, Phil. Trans. Roy. Soc. London 101, 157 (1903).~ R. Utiyama, Phys. Rev. 101, 1597 (1956); R. P. Feynman

(unpublished)."L.R. Walker, Phys. Rev. 105, 390 (1957).
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From group-theoretical considerations, invariant scattering amplitudes for two-body reactions of particles
with arbitrary spins and nonzero masses are constructed in various forms, including helicity amplitudes and
amplitudes free of kinematical singularities. They are linear combinations of spin basis functions with
scalar coefficients. In the process of construction the Pauli spin matrices are generalized for arbitrary spin.
On the basis of a Mandelstam representation for the scalar coef6cients, the unique analytic continuation
of the amplitudes in total angular momentum is obtained. Possible kinematical singularities of the scalar
amplitudes at the boundary of the physical region are discussed.

I. INTRODUCTION
HE basic quantities of S-matrix theory are the
Lorentz-invariant scattering matrix elements (5

functions), which depend on the spins and types of
incoming and outgoing particles and on the mass shell
values of their four-momenta. From the S functions,
invariant scattering amplitudes (M functions) that
have simpler transformation properties and that are
expected to be free of kinematical singularities can be
defined. ' A general procedure has been given to con-
*Work done under the auspices of the U. S. Atomic Energy
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struct the invariant amplitudes in terms of the irre-
ducible unitary representations of the inhomogeneous
proper I.orentz group, based on a two-component
spinor formalism '
Although the invariant scalar amplitudes for which

the Mandelstam representation is expected to be valid
have been known for some time in the simpler cases
such as those of the pion-nucleon' and nucleon-nucleon4

Theory $W. A. Benjamin, Inc., New York {to be published) j.~ A. O. Barut, Phys. Rev. 127, 321 (1962).
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Figure 5. The concluding part of Anderson’s 1962 paper on gauge symmetry breaking.

as the gravitational plasma frequency, (4⇡G)1/2 (wavelength ⇠ 104 km in normal matter) there

is a phonon-graviton interaction: in that case, because of the peculiar sign of the gravitational

interaction, leading to instability rather than finite mass. Utiyama and Feynman have pointed out

that gravity is also a Yang-Mills field. It is an amusing observation that three phonons plus two

gravitons are just enough components to make up the appropriate tensor particle which would be

required for a finite-mass graviton.” So the answer to the question of who first tried to discuss a

gravitational analog of gauge symmetry breaking is that Anderson did.

What happened next? In 1964, Peter Higgs wrote two papers on gauge invariance with massive

vector particles in relativistic physics. Like Anderson, but unlike Schwinger, his starting point is

spontaneous breaking of symmetry. This was a few years after Goldstone’s theorem and particle

physicists were more familiar with this concept. In the first paper, he explains somewhat abstractly,

in a language similar to Schwinger’s, why Goldstone’s theorem is not valid in the case of a gauge

symmetry. Higgs’s paper that really had greater impact was the second one in which he described

a concrete (and weakly coupled) model that everyone could understand and also introduced the

Higgs particle. Let us take a look at this paper (fig. 6).

Higgs explains at the outset that the phenomenon of a gauge boson acquiring a mass via sym-

metry breaking “is just the relativistic analog of the plasmon phenomenon to which Anderson has
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In a recent note' it was shown that the Gold-
stone theorem, ' that Lorentz-covaria. nt field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zero) go over into the Goldstone bosons when the
coupling tends to zero. This phenomenon is just
the relativistic analog of the plasmon phenome-
non to which Anderson' has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Fermi gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.
The simplest theory which exhibits this be-

havior is a gauge-invariant version of a model
used by Goldstone' himself: Two real' scalar
fields y„y, and a real vector field A interact
through the Lagrangian density

2 2
L =-&(&v ) -@'7v )1 2

2 2 ~ JL(,V—V(rp + y ) -P'1 2 P,v

where

V p =~ p -eA
1 jL(, 1 p, 2'

p2 +eA {p1'

F =8 A -BA
PV P, V V

e is a dimensionless coupling constant, and the
metric is taken as -+++. I. is invariant under
simultaneous gauge transformations of the first
kind on y, + iy, and of the second kind on A
Let us suppose that V'(cpa') = 0, V"(&p,') ) 0; then
spontaneous breakdown of U(1) symmetry occurs.
Consider the equations [derived from (1) by
treating ~y„ay„and A & as small quantities]
governing the propagation of small oscillations

about the "vacuum" solution y, (x) =0, y, (x) = y, :
s "(s (np )-ep A )=0,1 0 (2a)

(&'-4e,'V"(y,')f(&y, ) = 0, (2b)

s r"'=eq (s"(c,p, ) ep A-t.
V 0 1 0 p,

(2c)

Pv 2 2
8 B =0, 8 t" +e y 8 =0.

v 0 (4)

Equation (4) describes vector waves whose quanta
have (bare) mass ey, . In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2c) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2c) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term. '
When one considers theoretical models in

which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion. ' The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
ity of two nonvanishing vacuum expectation val-
ues, which may be chosen to be the two Y=0,
I3=0 members of the octet. There are two
massive scalar bosons with just these quantum
numbers; the remaining six components of the
scalar octet combine with the corresponding
components of the gauge-field octet to describe

Equation (2b) describes waves whose quanta have
(bare) mass 2po(V"(yo'))'"; Eqs. (2a) and (2c)
may be transformed, by the introduction of new
var iables

fl =A -(ey ) '8 (n, (p ),
p. 0 p, 1'

G =8 B -BB =F
IL(.V p. V V p, LL(V

into the form
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Figure 6. Peter Higgs’s second paper on gauge symmetry breaking, in which he introduced
in eqn. (1) what particle physicists know as the abelian Higgs model.

drawn attention: that the scalar zero-mass excitations of a superconducting neutral Fermi gas be-

come longitudinal plasmon modes of finite mass when the gas is charged.” He then goes on, in the

next paragraph (bottom left in fig. 6), to write down his model.

Higgs’s model was simply a relativistic version of the model that Landau and Ginzburg had

introduced to describe superconductivity. (Neither Higgs nor any of the authors I have mentioned

cited Landau and Ginzburg. Higgs describes his model as a gauge-invariant version of a model of

Goldstone.) The Landau-Ginzburg model can be deduced from the action

I =

Z
d3x dt
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Higgs’s model, which particle physicists call the abelian Higgs model, is the same thing (apart from

minor rescalings) with the kinetic energy of the scalar field made relativistic

I =

Z
d3x dt

✓
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4
Fµ⌫F

µ⌫ +Dµ�̄D
µ�� �(�̄�� a

2)2
◆
.

The models are the same except that the abelian Higgs model is quadratic rather than linear in

time derivatives.

When Dirac (for spin 1/2) or Klein and Gordon (for spin 0) made the Schrodinger equation

relativistic, they introduced an extra degree of freedom (the antiparticle). Something somewhat
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similar happens in making the Landau-Ginzburg model relativistic. There is an extra degree of

freedom because � and �̄ become independent rather than being canonically conjugate, as they

are in Landau-Ginzburg theory. In Landau-Ginzburg theory, if we ignore the gauge fields, there is

one spin 0 particle, the Goldstone boson, but if we include the gauge fields, then – as Anderson

had explained in the more sophisticated context of BCS theory – it becomes part of a massive spin

1 particle. In the abelian Higgs model, there is a second and massive spin 0 mode – this is the

fluctuation in the magnitude of �, which is now usually called the Higgs particle.

Actually, although there is not quite a Higgs particle in usual models of superconductivity – or

in superconducting phenomenology – there is a close cousin. In a superconductor, there are two

characteristic lengths, the penetration depth and the coherence length. They are described in the

Landau-Ginzburg and BCS models of superconductivity and are measured experimentally. (The

di↵erence between a Type I and Type II superconductor has to do with which is bigger.) These are

the analogs of the gauge boson mass and the Higgs boson mass in particle physics. Relativistically,

the rate at which the field decays in space is related to a particle mass, but nonrelativistically

there is no reason for this to happen, and in the Landau-Ginzburg model it doesn’t, in the case of

the correlation length. The Landau-Ginzburg model and the abelian Higgs model are completely

equivalent for static phenomena since they coincide once one drops the time derivatives.

Similar ideas were developed by others at roughly the same time as Higgs. We will just take

a quick look. The paper of Englert and Brout is in fig. 7. This paper is notable for considering

symmetry breaking in non-abelian gauge theory, while previous authors had considered the abelian

case, sometimes saying that this was for simplicity. “The importance of this problem,” they say,

“lies in the possibility that strong-interaction physics originates from massive gauge fields coupled

to a system of conserved currents,” for which they refer to Sakurai. Soon after was the paper of

Guralnik, Hagen, and Kibble (fig. 8), followed by Migdal and Polyakov (fig. 9). The title of Migdal

and Polyakov, “Spontaneous Breakdown of Strong Interaction Symmetry and Absence of Massless

Particles,” shows that they, too, were thinking of the strong interactions as the arena in which

gauge symmetry breaking might play a role.

From here, let us move forward to Kibble in 1966 (fig. 10). After mentioning the example

of superconductivity, Kibble writes “The first indication of a similar e↵ect in relativistic theories

was provided by the work of Anderson, who showed that the introduction of a long-range field,

like the electromagnetic field, might serve to eliminate massless particles from the theory. More

recently, Higgs has exhibited a model which shows explicitly how the massless Goldstone bosons

are eliminated by coupling the current associated with the broken symmetry to a gauge field.” He

then goes on to discuss some important details of symmetry breaking in nonabelian gauge theory.

He explains how it it is possible to have partial breaking of nonabelian gauge symmetry, with some

gauge mesons remaining massless. Like Higgs and some of the others, he does not really say what

the physical application is supposed to be, but he does remark that nature has only one massless

vector particle – the photon – but various (in some cases approximate) global symmetries. At least

this was on the right track.
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Figure 7. Brout and Englert on gauge symmetry breaking.

Figure 8. Guralnik, Hagen, and Kibble on gauge symmetry breaking.

The next milestone, of course, was that in 1967-8, Weinberg and Salam actually found what

spontaneous gauge symmetry breaking is good for in particle physics. (Their model was a gauge-

invariant refinement of an earlier model by Glashow. That model had W and Z mesons, but lacked

the relationship between their masses and couplings that follows from the spontaneous symmetry

breaking mechanism introduced by Weinberg and Salam.) However, since we have already looked

at quite a few original papers, let us jump ahead to Weinberg’s Nobel Prize address in 1979.

In the passage copied in fig. 11, Weinberg explains quite vividly how – like everyone else in

the 1960’s, it seems – he started by assuming that gauge symmetry breaking was supposed to be

applied to the strong interactions. His detailed explanation actually makes interesting reading. To
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Figure 9. Migdal and Polyakov on gauge symmetry breaking.

help the reader understand this passage, I will make the following remarks. If baryon number is

a gauge symmetry, what is the gauge meson? The lightest hadronic particle of spin 1 with the

appropriate quantum numbers is the ! meson, or the � meson if one includes strange particles. So

one might think of one of those as a gauge meson. But if baryon number is a gauge symmetry,

perhaps isospin symmetry is a gauge symmetry also. In this case, the lightest candidates for the

massive gauge particles are the ⇢ mesons. But bearing in mind that isospin symmetry is part of a

spontaneously broken SU(2)⇥SU(2) chiral symmetry, perhaps there is also an axial vector triplet

of massive gauge mesons; the A1 is the lightest candidate. All this is quite alien to present-day

thinking, and as Weinberg explains, there were a lot of problems: massless ⇢ mesons, or no pions, or

explicit (rather than spontaneous) breaking of gauge invariance and therefore no renormalizability,

depending on what assumptions he made.

Then enlightenment dawns. Weinberg explains that “At some point in the fall of 1967, I think

while driving to my o�ce at M.I.T., it occurred to me that I had been applying the right ideas to

the wrong problem. It is not the ⇢ mesons that is massless: it is the photon. And its partner is not

the A1, but the massive intermediate boson, which since the time of Yukawa had been suspected to

be the mediator of the weak interactions. The weak and electromagnetic interactions could then be

described in a unified way in terms of an exact but spontaneously broken gauge symmetry.... And
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According to the Goldstone theorem, any manifestly covariant broken-symmetry theory must exhibit
massless particles. However, it is known from previous work that such particles need not appear in a rela-
tivistic theory such as radiation-gauge electrodynamics, which lacks manifest covariance. Higgs has shown
how the massless Goldstone particles may be eliminated from a theory with broken U(1) symmetry by
coupling in the electromagnetic field. The primary purpose of this paper is to discuss the analogous problem
for the case of broken non-Abelian gauge symmetries. In particular, a model is exhibited which shows how
the number of massless particles in a theory of this type is determined, and the possibility of having a
broken non-Abelian gauge symmetry with no massless particles whatever- is established. A secondary
purpose is to investigate the relationship between the radiation-gauge and Lorentz-gauge formalisms.
The Abelian-gauge case is reexamined, in order to show that, contrary to some previous assertions, the
Lorentz-gauge formalism, properly handled, is perfectly consistent, and leads to physical conclusions
identical with those reached using the radiation gauge.

L INTRODUCTION

'HEORIES with spontaneous symmetry breaking
(in which the Hamiltonian but not the ground

state is symmetric) have played an important role in
our understanding of nonrelativistic phenomena like
superconductivity and ferromagnetism. Many authors,
beginning with Nambu, ' have discussed the possibility
that some at least of the observed approximate sym-
metries of relativistic particle physics might be inter-
preted in a similar way. The most serious obstacle has
been the appearance in such theories of unwanted mass-
less particles, as predicted by the Goldstone theorem. '
In nonrelativistic theories such as the BCSmodel, the

corresponding zero-energy-gap excitation modes may
be eliminated by the introduction of long-range forces.
The first indication of a similar effect in relativistic
theories was provided by the work of Anderson, ' who
showed that the introduction of a long-range field, like
the electromagnetic field, might serve to eliminate
massless particles from the theory. More recently,
Higgs' has exhibited a model which shows explicitly
how the massless Goldstone bosons are eliminated by
coupling the current associated with the broken sym-
metry to a gauge field. The reasons for the breakdown
of the Goldstone theorem in this case have been
analyzed by Guralnik. , Hagen, and Kibble. ' The situ-
ation is identical with that in the nonrelativistic domain.

*The research reported in this document has been sponsored
in part by the U. S. Air Force Office of Scientific Research OAR
through the European Office Aerospace Research, U. S.Air Force.

~ "j|.Nambu, Phys. Rev. Letters 4, 380 (1960).Y. Nambu and
G. Jona-Lasinio, Phys. Rev. 122, 345 {1961);M. Baker and S. L.
Glashow, ibid. 128, 2462 (1962); S. L. Glashow, ioid. 130, 2132
(1962).' J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone,
A. Salam, and S.Weinberg, Phys. Rev. 127, 965 (1962).' P. W. Anderson, Phys. Rev. 130, 439 (1963).

4 P. W. Higgs, Phys. Letters 12, 132 (1964).' G. S. Guralnik, C. R. Hagen, and T.W. B.Kibble, Phys. Rev.
Letters 13, 585 (1964).See also T.W. B.Kibble, in Proceedings of
the Oxford International Conference on Elementary Particles, 1965
{Rutherford High Energy Laboratory, Harwell, England, 1966),
p. 19.

In either case the theorem is inapplicable in the presence
of long-range forces, essentially because the continuity
equation B„j&=0no longer implies the time indepen-
dence of expressions like J'd'x [j'(x),g(0)], since the
relevant surface integrals do not vanish in the limit of
infinite volume. (In the relativistic case, the theorem
does apply if we use the Lorentz gauge; but then it tells
us nothing about whether the massless particles are
physical. ) It should be noted that the extension or
corollary of the Goldstone theorem discussed by
Streater' also fails in precisely this case. If long-range
fields are introduced, spontaneous symmetry breaking
can lead to mass splitting.
As has been emphasized recently by Higgs, ' it thus

appears that the only way of reconciling spontaneous
symmetry breaking in relativistic theories with the
absence of massless particles is to couple in gauge fields.
Another possibility is that Goldstone bosons may turn
out to be completely uncoupled and therefore physically
irrelevant. In this case, however, the Hilbert space
decomposes into the direct product of a physical Hilbert
space and a free-particle Fock space for the Goldstone
bosons. The broken symmetry appears only in the
latter, and no trace of it remains in any physical
quantities. In most simple cases, the symmetry trans-
formations leave the physical Hilbert space completely
invariant; and in any case they act unitarily on it. Such
theories cannot therefore explain observed approximate
symmetries. This decoupling of Goldstone modes does
occur in the I orentz-gauge treatment of models like
that discussed by Higgs, in which in fact no trace of the
original U(1) symmetry remains in the physical states.
However it does not occur in corresponding non-Abelian
gauge theories, to which the conventional (i.e., Gupta-
Bleuler) Lorentz-gauge formation is inapplicable.
It has been suggested by Fuchs' that in the case of

non-Abelian gauges the massless particles may persist

6 R. F. Streater, Phys. Rev. Letters 15, 475 (1965).
7 P. W. Higgs, Phys. Rev. 145, 1156 (1966).' N. Fuchs, Phys. Rev. 140, B911, (1965).
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Figure 10. Kibble on symmetry breaking in nonabelian gauge theory.

this theory would be renormalizable like quantum electrodynamics because it is gauge invariant

like quantum electrodynamics.”

I have been asked whether Weinberg and Salam were the first to use gauge symmetry breaking to

give masses to particles other than gauge bosons. They were the first to generate masses for leptons

in this way. For strong interactions, matters are more complicated. The modern understanding is

that hadron masses come partly from dynamical e↵ects of QCD and partly from the bare masses

of quarks and leptons. (The masses of protons, neutrons, and pions come mostly from the QCD

e↵ects while heavier hadrons containing charm or bottom quarks get mass mostly from the quark

bare masses.) In the modern understanding, it is the quark bare masses, not the part of the hadron

masses coming from QCD e↵ects, that result from gauge symmetry breaking and the coupling to

the Higgs particle. Such a clear statement was however not possible until QCD was put in its

modern form in 1973, enabling the full formulation of the Standard Model. From a modern point

of view, earlier attempts to connect hadron masses to gauge symmetry breaking (as opposed to

spontaneous breaking of global chiral symmetries) mostly did not focus on the right part of the

problem.

The emergence of the Standard Model brings us to the modern era. I will conclude this talk

by sketching briefly a few of the subsequent developments. First we will talk about the strong



12

CONCEPTUAL FOUNDATIONS OF THE UNIFIED  
THEORY OF WEAK AND ELECTROMAGNETIC 
INTERACTIONS 
Nobel Lecture, December 8, 1979 
by STEVEN WEINBERG 
Lyman Laboratory of Physics Harvard University and Harvard- 
Smithsonian Center for Astrophysics, Cambridge, MASS., USA. 
 

!

!
!

tions.
Now, back to 1967. I had been considering the implications of the

broken SU(2) x SU(2) symmetry of the strong interactions, and I thought
of trying out the idea that perhaps the SU(2) x SU(2) symmetry was a
“local,” not merely a “global,” symmetry. That is, the strong interactions
might be described by something like a Yang-Mills theory, but in addition
to the vector  mesons of the Yang-Mills theory, there would also be axial
vector Al mesons. To give the  meson a mass, it was necessary to insert a
common  and Al mass term in the Lagrangian, and the spontaneous

breakdown of the SU(2) x SU(2) symmetry would then split the  and Al
by something like the Higgs mechanism, but since the theory would not be
gauge invariant the pions would remain as physical Goldstone bosons.
This theory gave an intriguing result, that the  mass ratio should be

 and in trying to understand this result without relying on perturbation
theory, I discovered certain sum rules, the “spectral function sum rules,”
[23] which turned out to have variety of other uses. But the SU(2) x SU(2)
theory was not gauge invariant, and hence it could not be renormalizable,
[24] so I was not too enthusiastic about it. [25] Of course, if I did not insert
the  mass term in the Lagrangian, then the theory would be gauge
invariant and renormalizable, and the Al would be massive. But then
there would be no pions and the  mesons would be massless, in obvious
contradiction (to say the least) with observation.

At some point in the fall of 1967, I think while driving to my office at

Figure 11. A passage from Steve Weinberg’s Nobel Prize Lecture in 1979.

interactions. Since the discovery of asymptotic freedom in 1973, we describe the strong interactions

via an unbroken non-abelian gauge theory with gauge group SU(3), coupled to quarks. The SU(3)

gauge symmetry is definitely unbroken, so at first sight it looks like spontaneous breaking of gauge

symmetry turned out to be the wrong idea for the strong interactions.

There is a mystery, however, in QCD: why don’t we see the quarks? Experiment and computer

simulations both seem to show that the quarks are “confined,” that the energy grows indefinitely

if one tries to separate a quark from an antiquark. Confinement is quite a surprise and I would say

that we still do not fully understand it today. However it was realized in the 1970’s that supercon-

ductivity comes to the rescue again, giving an understandable explanation of how confinement can

happen. An isolated magnetic monopole would have infinite energy in a superconductor because

of the Meissner e↵ect. As sketched in fig. 12, a monopole is a source of magnetic flux, but the

Meissner e↵ect would cause this flux to be compressed into an Abrikosov-Gorkov flux tube, with

an energy proportional to its length.
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Figure 12. In a superconductor, a magnetic monopole (small ball) is the source of a flux
tube. As a result, its energy grows linearly with the size of the system.

The best qualitative understanding that we have of confinement today is to say that it involves a

“dual” to the Meissner e↵ect, where this “duality” somehow generalizes to nonabelian gauge theory

the symmetry of Maxwell’s equations that exchanges electric and magnetic fields. Electric charges

– quarks – are then confined by a “dual Meissner e↵ect.” We do not fully understand this in the

case of QCD, but by now we know various situations in four-dimensional gauge theories in which

something like this happens.

Now we come to the weak interactions. The original Weinberg-Salam model was based on a

weakly-coupled picture with an elementary Higgs field – an elaboration of the Landau-Ginzburg

and Higgs models to include nonabelian gauge symmetry and leptons (and later quarks). But many

physicists for decades have wondered if the analogy with superconductivity is even stronger – if the

breakdown of the electroweak gauge symmetry involves something more like the BCS mechanism

of superconductivity.

There have been numerous motivations, and of course di↵erent physicists have had di↵erent

motivations at di↵erent times. Some simply suspected that the analogy between the weak inter-

actions and superconductivity would turn out to be even closer. Some considered the model with

an elementary scalar field to be arbitrary and inelegant. Another motivation for some was the

fact that the Standard Model is not predictive for lepton and quark masses (and “mixing angles”).

Each mass is a free parameter, determined by the strength of the coupling of the Higgs field to

a given quark or lepton. Maybe a model of “dynamical symmetry breaking,” more like the BCS

mechanism, would give a more predictive model.

Perhaps the most compelling motivation came from the “hierarchy problem.” Although the

electroweak gauge theory with a Higgs field is renormalizable, there is a puzzle about it. In the

action describing the Higgs field
Z

d4x
�
Dµ�̄D

µ�� �(|�|2 � a

2)2
�
,

the parameter a2, which determines the mass scale of weak interactions, is a “relevant” parameter

in the renormalization group sense. Generic ideas of renormalization theory suggest that a2 should

be in order of magnitude as large as the largest mass scale of the theory – probably the mass scale

of gravity or of grand unification of some sort, but anyway much bigger than the mass scale of weak

interactions. By analogy, in condensed matter physics, unless one tunes a parameter – such as the

temperature – one does not see a correlation length much longer than the lattice spacing. Why the

electroweak length scale is so much bigger than the particle physics analog of the lattice spacing is

the “hierarchy problem.”

There is no problem writing down a model that replaces the Higgs field with a pairing mecha-

nism (involving a new “technicolor” gauge symmetry with“techniquarks”) and solves the hierarchy
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problem. There is even an immediate success: such a model can easily reproduce a relationship

between the W and Z masses and the weak mixing angle that was one of the early triumphs of the

Standard Model. However, a serious problem was well-recognized in the late 1970’s: one can argue

that the way the Standard Model gives quark and lepton masses is inelegant and unpredictive, but

at least it works. Simple models of “dynamical electroweak gauge symmetry breaking” have serious

problems giving realistic quark and lepton masses. Of course, people found clever fixes but it never

looked like a match made in heaven.

Experiment began to weigh in seriously in the 1990’s. Neither the Higgs particle nor the new

particles required by “dynamical” models were discovered. But tests of the Standard Model –

especially in e

+
e

� annihilation – became precise enough that it was possible to say that the original

version of the Standard Model with a simple Higgs field is a better fit than more sophisticated

“dynamical” models. There certainly were still fixes, but people had to work harder to find them.

Probably we all know where this story has reached, at least for now. A particle with properties

a lot like the Higgs particle of the Standard Model was found a year ago with a mass around

125 GeV. It looks like the electroweak scale is weakly coupled, as is possible in part because of

Anderson’s insights about gauge symmetry breaking in 1962. But the hierarchy problem is still

with us. “Dynamical” models that tried to solve it have not been confirmed, and weakly coupled

models – notably based on supersymmetry – that tried to solve it have also not yet been confirmed.

I will just end with a question: When the LHC gets to higher energies in 2015, will this situation

persist or will it be resolved?


