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In this lecture, I am going to talk primarily about just one of the dozens of important papers
that Phil Anderson has written. This paper was written just a little over 51 years ago, in 1962.
I will set it in context by telling a little about the work that Julian Schwinger had done shortly
before, and also we will recall Phil’s earlier work on superconductivity that helped to set the stage.
Then we will take a trip through later developments that occurred through the rest of the 1960’s
and beyond, and we will conclude with some observations about the present. (I won’t talk about
some early precursors such as Stueckelberg in 1938, but later we will get to the model introduced
by Landau and Ginzburg in 1950.)

The title page of Phil’s paper, which is called “Plasmons, Gauge Invariance, and Mass,’

Y

and was
received on November 8, 1962, can be found in fig. 1. As one can see, Phil starts out by citing the
work of Julian Schwinger. The reference is to two very short papers that Schwinger had written,
also published in 1962. To understand Phil’s work, we should first take a look at Schwinger’s
contributions.

In the first paper (fig. 2), Schwinger argues somewhat abstractly that — in contrast to what we
are familiar with in the case of electromagnetism — gauge invariance does not imply the existence
of a massless spin one particle. A couple of things are worth noting here, apart from the fact that
Schwinger was forward-thinking to even ask the question. One is that Schwinger was motivated
by the strong interactions (there is no mention of weak interactions in the paper). The question
he asks in the first paragraph is whether the conservation law of baryon number could be a gauge
symmetry. There is an obvious problem, which is that we do not see a massless spin 1 particle
coupled to baryon number. So Schwinger asked whether it is possible for baryon number (or
something like baryon number) to be conserved because of a gauge symmetry, without the gauge
symmetry producing a massless spin 1 particle.

The answer that Schwinger proposes — even in the first sentence of the abstract — is that gauge
invariance does not necessarily imply the existence of a massless spin 1 particle if the coupling
is large. His idea is that there is no massless particle if there is a pole in the current-current
correlation function (J,(¢q)J,(—¢)). The role of strong coupling is supposed to be to generate this
pole. Thus, QED is weakly coupled, and has no such pole; Schwinger’s point of view is that in a

suitable gauge-invariant theory, strong coupling effects might produce such a pole.
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Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. We show that
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger’s idea. It is also shown that Schwinger’s criterion that the vector field m>0 implies that the matter
spectrum before including the Yang-Mills interaction contains 7=0, but that the example of supercon-
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these
ideas and the zero-mass difficulty in theories with broken symmetries are given.

ECENTLY, Schwinger' has given an argument
strongly suggesting that associating a gauge
transformation with a local conservation law does not
necessarily require the existence of a zero-mass vector
boson. For instance, it had previously seemed impossible
to describe the conservation of baryons in such a
manner because of the absence of a zero-mass boson
and of the accompanying long-range forces.? The
problem of the mass of the bosons represents the major
stumbling block in Sakurai’s attempt to treat the
dynamics of strongly interacting particles in terms of
the Yang-Mills gauge fields which seem to be required
to accompany the known conserved currents of baryon
number and hypercharge. (We use the term “Yang-
Mills” in Sakurai’s sense, to denote any generalized
gauge field accompanying a local conservation law.)
The purpose of this article is to point out that the
familiar plasmon theory of the free-electron gas ex-
emplifies Schwinger’s theory in a very straightforward
manner. In the plasma, transverse electromagnetic
waves do not propagate below the “plasma frequency,”
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas.
At and above this frequency, three modes exist, in
close analogy (except for problems of Galilean invari-
ance implied by the inequivalent dispersion of longi-
tudinal and transverse modes) with the massive vector
boson mentioned by Schwinger. The plasma frequency
! J. Schwinger, Phys. Rev. 125, 397 (1962).
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is equivalent to the mass, while the finite density of
electrons leading to divergent ‘vacuum’” current
fluctuations resembles the strong renormalized coupling
of Schwinger’s theory. In spite of the absence of
low-frequency photons, gauge invariance and particle
conservation are clearly satisfied in the plasma.

In fact, one can draw a direct parallel between the
dielectric constant treatment of plasmon theory* and
Schwinger’s argument. Schwinger comments that the
commutation relations for the gauge field A give us
one sum rule for the vacuum fluctuations of 4, while
those for the matter field give a completely independent
value for the fluctuations of matter current j. Since j
is the source for 4 and the two are connected by field
equations, the two sum rules are normally incompatible
unless there is a contribution to the 4 rule from a free,
homogeneous, weakly interacting, massless solution of
the field equations. If, however, the source term is
large enough, there can be no such contribution and
the massless solutions cannot exist.

The usual theory of the plasmon does not treat the
electromagnetic field quantum-mechanically or discuss
vacuum fluctuations; yet there is a close relationship
between the two arguments, and we, therefore, show
that the quantum nature of the gauge field is irrelevant.
Our argument is as follows:

The equation for the electromagnetic field is

P Au= (B — )4, (kw)=4rj.(kw).

4 P. Nozitres and D. Pines, Phys. Rev. 109, 741 (1958).

FIGURE 1. The first page of Phil Anderson’s paper on gauge symmetry breaking, received
November 8, 1962.

In Schwinger’s second paper (fig. 3), he gives a concrete example of gauge invariance not implying
the existence of a massless spin 1 particle. The example is based on a remarkable exact solution,
not assuming weak coupling.

The model Schwinger solved was simply 1 4+ 1-dimensional Quantum Electrodynamics, with
electrons of zero bare mass. The action is

1

[=——
4e2

d*x F,, F*™ + / A%z ip.

Nowadays this model — which is known as the Schwinger model — is usually solved simply and
understandably (but surprisingly) by “bosonization,” which converts it to a free theory (of the
gauge field A, and a scalar field ¢) with all the properties that Schwinger claimed. Schwinger’s
approach to solving it was more axiomatic.

The model is actually considered an important example that illustrates quite a few things, and

not only what Schwinger had in mind. For instance, it is also used to illustrate the physics of a
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It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associ-
ated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper under-
standing of nucleonic charge conservation as a manifestation of a gauge invariance, without the obvious
conflict with experience that a massless particle entails.

OES the requirement of gauge invariance for a.
vector field coupled to a dynamical current imply
the existence of a corresponding particle with zero
mass? Although the answer to this question is invari-
ably given in the affirmative,! the author has become
convinced that there is no such necessary implication,
once the assumption of weak coupling is removed. Thus
the path to an understanding of nucleonic (baryonic)
charge conservation as an aspect of a gauge invariance,
in strict analogy with electric charge,? may be open for
the first time.
One potential source of error should be recognized at
the outset. A gauge-invariant system is not the con-
tinuous limit of one that fails to admit such an arbitrary

FIGURE 2. The first of Schwinger’s two papers on gauge symmetry breaking.

PHYSICAL REVIEW

VOLUME 128,

Green’s functions of other gauges have more compli-
cated operator realizations, however, and will generally
lack the positiveness properties of the radiation gauge.

Let us consider the simplest Green’s function associ-
ated with the field 4 ,(x), which can be derived from the
unordered product

(Au(x)4,())

= [ @ €2 = dm? 0, ()5 (p*+m?) A s ()
@y ’

where the factor 7..(p)8(p>+m?) enforces the spectral
restriction to states with mass 7> 0 and positive energy.
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The possibility that a vector gauge field can imply a nonzero mass particle is illustrated by the exact

solution of a one-dimensional model.

T has been remarked' that the gauge invariance of a
vector field does not necessarily require the existence
of a massless physical particle. In this note we shall
add a few related comments and give aspecific model
for which an exact solution affirms this logical possibility.
The model is the physical, if unworldly situation of
electrodynamics in one spatial dimension, where the
charge-bearing Dirac field has no associated mass con-
stant. This example is rather unique since it is a simple
model for which there is an exact divergence-free
solution.?

and A*>0 unless m=0 is contained in the spectrum.
Thus, it is necessary that A vanish if n=0 is to appear
as an isolated mass value in the physical spectum. But
it is also necessary that

5(0)=0,

0 dm2
/ <o,
>0 m?

such that

for only then do we have a pole at p*=0,

FIGURE 3. Schwinger’s second paper on gauge symmetry breaking, in which he introduced
and solved what is now called the Schwinger model.

gauge theory #-angle, and after a small perturbation to give the electron a bare mass, it becomes
a model of confinement of charged particles. However, although I was not in physics at the time, I
suspect that Schwinger’s extremely short paper mystified many of his contemporaries. His way of
solving the model probably was a little abstract, and the whole thing probably seemed to revolve

around peculiarities of 1 + 1 dimensions.



Schwinger’s concept was summarized in the last sentence of his first paper: “the essential point
is embodied in the view that the observed physical world is the outcome of the dynamical play
among underlying primary fields, and the relationship between these fundamental fields and the
phenomenological particles can be comparatively remote, in contrast to the immediate correlation
that is commonly assumed.” In other words, in general, there need be no simple relationship
between particles and fields — or in condensed matter physics, between bare electrons and nuclei
and the emergent quasi-particles that give a more useful description at long distances.

Schwinger is saying that the situation that prevails in QED — in which the electron field corre-
sponds to electrons, and the photon field corresponds to photons — results from the fact that this
theory is weakly coupled. In a strongly coupled theory, there might be no simple correspondence
between fields and particles. This was actually a very wise remark, probably putting Schwinger way
ahead of his contemporaries in particle physics. And it is at the core of the way we now understand
the strong interactions.

But Phil Anderson showed that Schwinger was actually not entirely correct about the specific
question he was writing about — how to have gauge invariance without a massless spin one particle.
To be more precise, everything that Schwinger said about strong coupling is true, but it is not the
whole story. As Anderson showed, a weakly coupled vector meson might also acquire a mass, and
here the essence of the matter is not strong coupling but symmetry breaking — the properties of
the vacuum. In fact, Phil expressed a point of view that is quite opposite to Schwinger’s, showing
that not just strong coupling but even quantum mechanics is irrelevant to the problem of how to
have gauge invariance without a massless spin one particle.

Phil’s paper is largely devoted to two examples from well-established physics. He begins by
saying that “the familiar plasmon theory of the free electron gas exemplifies Schwinger’s theory in

)

a very straightforward manner,” with the plasma frequency, below which electromagnetic waves do
not propagate, playing the role of the vector meson mass for Schwinger. He shows that the usual
analysis of screening in a plasma can be put in close parallel with what Schwinger had said in the
relativistic case. He also observes that the problem of screening in a plasma is usually understood
classically, without invoking quantum mechanics, and deduces that “the quantum nature of the
gauge field is irrelevant” to the question of how to have gauge invariance without a massless vector
particle.

The second part of Phil’s 1962 paper deals with an example that is even more incisive — su-
perconductivity. The background to this was provided by a series of three papers that Phil had
written in 1958 (shown in fig. 4 is the title page of the first of the three papers — which incidentally
is the one he referred to in 1962). In these papers, Phil had analyzed gauge invariance and the
fate of the “Goldstone” boson (the term is ahistorical as Goldstone had not yet formulated his
relativistic theorem) in the BCS theory of superconductivity, showing that this mode combines
with ordinary photons to become a gapped state of spin 1. Thus the electronic state of an ordinary
BCS superconductor is truly gapless.

In the 1962 paper, Phil explains cogently how superconductivity illustrates the phenomenon
described by Schwinger, in a context in which the gauge field is weakly coupled and the physics is

well understood. Much of this paper reads just like what one would explain to a student today.
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We discuss the coherent states generated in the Bardeen, Cooper, and Schrieffer theory of supercon-
ductivity by the momentum displacement operator pq= 2, exp ({Q -r,). Without taking into account plasma
effects, these states are like bound Cooper pairs with momentum %Q and energies lying in the gap, and they
play a central role in the explanation of the gauge invariance of the Meissner effect. Long-range Coulomb
forces recombine them into plasmons with equations of motion unaffected by the gap. Central to the argu-
ment is the proof that the non-gauge-invariant terms in the Hamiltonian of Bardeen, Cooper, and Schrieffer
have an effect on these states which vanishes in the weak-coupling limit.

1. INTRODUCTION instead of zero. The total operator applied to ¥, leads

UCKINGHAM! has questioned whether an energy- to a linear combination of such states, which can be
gap model of superconductivity, such as that of th(?ught of as equl'valent to a Cooper bound sta'.te6 of a
Bardeen, Cooper, and Schrieffer,? can explain the pair of electrons with nonzero momentum, superimposed

Meissner effect without violating a certain identity ©0 the B:C'S' féround state. .

derived by Schafroth® on the basis of gauge invariance, Our. dlscu3519n of 'these problems is based on 'ghe
and by Buckingham using essentially an f-sum rule. followmg phy§1cal picture: any transverse excitation
This identity is what causes the insulator, which also 1nvolYes breaking up the phase therence over the whple
has an energy gap, to fail to show a Meissner effect; Fermi surface of at lgast one pair in the superf:ond}lct%ng
thus, Buckingham and Schafroth* argue, a proof of ground state, and so mvolves'a. loss of attractive })mc!mg
gauge invariance lies at the core of the problem of Cner&Y: This causes the Meissner effect. Longitudinal

superconductivity, especially since the Hamiltonian excitations, however, such as those generated by pq, do
used in B.C.S. is not gauge-invariant not break up phase coherence in the superconducting

FIGURE 4. The first of Anderson’s three papers of 1958 on gauge invariance in the BCS
model of superconductivity.

For example: “the way is now open for a degenerate vacuum theory of the Nambu type without
any difficulties involving either zero-mass Yang-Mills gauge bosons or zero-mass Goldstone bosons.
These two types of bosons seem capable of ‘canceling each other out’ and leaving finite mass bosons

)

only.” He goes on: “It is not at all clear that the way for a Sakurai theory [with baryon number
as a gauge symmetry] is equally uncluttered. The only mechanism suggested by the present work
(of course, we have not discussed non-Abelian gauge groups) for giving the gauge field mass is
the degenerate vacuum type of theory, in which the original symmetry is not manifest in the
observable domain. Therefore, it needs to be demonstrated that the necessary conservation laws
can be maintained.” In other words, as one would say today, if baryon number is gauged and
spontaneously broken, then baryon number will not be conserved in nature.

And let us look at the end of the paper (fig. 5): “I should like to close with one final remark
on the Goldstone theorem. This theorem was initially conjectured, one presumes, because of
the solid-state analogs, via the work of Nambu and Anderson” (the reference here is to Nambu’s
work on spontaneously broken chiral symmetry and to Anderson’s paper whose title page appears
in fig. 4). He goes on to give various examples, both old (spin waves and phonons) and new
(superconductors and superfluids). And then he writes, “It is noteworthy that in most of these
cases, upon closer examination, the Goldstone bosons do indeed become tangled up with Yang-Mills
gauge bosons and do not in any true sense really have zero mass. Superconductivity is a familiar

example, but a similar phenomenon happens with phonons; when the phonon frequency is as low
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I should like to close with one final remark on the
Goldstone theorem. This theorem was initially con-
jectured, one presumes, because of the solid-state
analogs, via the work of Nambu® and of Anderson.!!
The theorem states, essentially, that if the Lagrangian
possesses a continuous symmetry group under which
the ground or vacuum state is not invariant, that state
is, therefore, degenerate with other ground states. This
implies a zero-mass boson. Thus, the solid crystal
violates translational and rotational invariance, and
possesses phonons; liquid helium violates (in a certain
sense only, of course) gauge invariance, and possesses
a longitudinal phonon; ferro-magnetism violates spin
rotation symmetry, and possesses spin waves; super-
conductivity violates gauge invariance, and would have
a zero-mass collective mode in the absence of long-range
Coulomb forces.

It is noteworthy that in most of these cases, upon
closer examination, the Goldstone bosons do indeed
become tangled up with Yang-Mills gauge bosons and,
thus, do not in any true sense really have zero mass.
Superconductivity is a familiar example, but a similar
phenomenon happens with phonons; when the phonon
frequency is as low as the gravitational plasma fre-
quency, (4rGp)'?* (wavelength~10* km in normal
matter) there is a phonon-graviton interaction: in that
case, because of the peculiar sign of the gravitational
interaction, leading to instability rather than finite

mass.’? Utiyama®® and Feynman have pointed out that
gravity is also a Yang-Mills field. It is an amusing
observation that the three phonons plus two gravitons
are just enough components to make up the appropriate
tensor particle which would be required for a finite-mass
graviton.

Spin waves also are known to interact strongly with
magnetostatic forces at very long wavelengths* for
rather more obscure and less satisfactory reasons. We
conclude, then, that the Goldstone zero-mass difficulty
is not a serious one, because we can probably cancel it
off against an equal Yang-Mills zero-mass problem.
What is not clear yet, on the other hand, is whether it is
possible to describe a truly strong conservation law
such as that of baryons with a gauge group and a
Yang-Mills field having finite mass.

I should like to thank Dr. John R. Klauder for
valuable conversations and, particularly, for correcting
some serious misapprehensions on my part, and Dr.
John G. Taylor for calling my attention to Schwinger’s
work.

12 J. H. Jeans, Phil. Trans. Roy. Soc. London 101, 157 (1903).

B R, Utiyama, Phys. Rev. 101, 1597 (1956); R. P. Feynman

(unpublished).
4 L. R. Walker, Phys. Rev. 105, 390 (1957).
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FIGURE 5. The concluding part of Anderson’s 1962 paper on gauge symmetry breaking.

as the gravitational plasma frequency, (47TG)1/ 2 (wavelength ~ 10* km in normal matter) there
is a phonon-graviton interaction: in that case, because of the peculiar sign of the gravitational
interaction, leading to instability rather than finite mass. Utiyama and Feynman have pointed out
that gravity is also a Yang-Mills field. It is an amusing observation that three phonons plus two
gravitons are just enough components to make up the appropriate tensor particle which would be
required for a finite-mass graviton.” So the answer to the question of who first tried to discuss a
gravitational analog of gauge symmetry breaking is that Anderson did.

What happened next? In 1964, Peter Higgs wrote two papers on gauge invariance with massive
vector particles in relativistic physics. Like Anderson, but unlike Schwinger, his starting point is
spontaneous breaking of symmetry. This was a few years after Goldstone’s theorem and particle
physicists were more familiar with this concept. In the first paper, he explains somewhat abstractly,
in a language similar to Schwinger’s, why Goldstone’s theorem is not valid in the case of a gauge
symmetry. Higgs’s paper that really had greater impact was the second one in which he described
a concrete (and weakly coupled) model that everyone could understand and also introduced the
Higgs particle. Let us take a look at this paper (fig. 6).

Higgs explains at the outset that the phenomenon of a gauge boson acquiring a mass via sym-

metry breaking “is just the relativistic analog of the plasmon phenomenon to which Anderson has
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In a recent note! it was shown that the Gold-
stone theorem,? that Lorentz-covariant field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zero) go over into the Goldstone bosons when the
coupling tends to zero. This phenomenon is just
the relativistic analog of the plasmon phenome-
non to which Anderson® has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Fermi gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.

The simplest theory which exhibits this be-
havior is a gauge-invariant version of a model
used by Goldstone® himself: Two real® scalar
fields ¢,, ¢, and a real vector field A  interact
through the Lagrangian density

2 2
L=-3(Ve,) -3(ve,)

about the “vacuum” solution ¢,(x) =0, @,(x)=¢,:

M —
] {au(mpl)—e(pOA “}-0, (2a)
{0%-40® V(95" {(ag,) =0, (2b)
aVF“V=e<pO{8“(A<p1)—ew0A “}. (2¢)

Equation (2b) describes waves whose quanta have
(bare) mass 2¢{V’"(¢,>)}*'?; Egs. (2a) and (2¢)
may be transformed, by the introduction of new
variables

B =A -(ep )78 (a¢,),

p AuT% u( “1

G =8 B-3B =F (3)
woopvoovou

into the form
n w2 2 4
] = ) =0.
HB 0, uG +e 9, B"=0 (4)

Equation (4) describes vector waves whose quanta
have (bare) mass e¢,. In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2c) describe zero-mass
scalar and vector bosons, respectively. In pass-

ing, we note that the right-hand side of (2¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,

2 2
-V, +o, )-5FWF“", (1)

FIGURE 6. Peter Higgs’s second paper on gauge symmetry breaking, in which he introduced
in eqn. (1) what particle physicists know as the abelian Higgs model.

drawn attention: that the scalar zero-mass excitations of a superconducting neutral Fermi gas be-
come longitudinal plasmon modes of finite mass when the gas is charged.” He then goes on, in the
next paragraph (bottom left in fig. 6), to write down his model.

Higgs’s model was simply a relativistic version of the model that Landau and Ginzburg had
introduced to describe superconductivity. (Neither Higgs nor any of the authors I have mentioned
cited Landau and Ginzburg. Higgs describes his model as a gauge-invariant version of a model of
Goldstone.) The Landau-Ginzburg model can be deduced from the action
Dd |?
Dz’

1 - D 1 _
I= [ dzdt | —~F,F" +id—& — — —A(®® — a?)?
/ v el S VA v Z ‘ ( @)
Higgs’s model, which particle physicists call the abelian Higgs model, is the same thing (apart from
minor rescalings) with the kinetic energy of the scalar field made relativistic

1 _ _
I= / Pz dt — 3 Fw " + Dy @D"® — \(2® — a?)?

The models are the same except that the abelian Higgs model is quadratic rather than linear in
time derivatives.

When Dirac (for spin 1/2) or Klein and Gordon (for spin 0) made the Schrodinger equation
relativistic, they introduced an extra degree of freedom (the antiparticle). Something somewhat
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similar happens in making the Landau-Ginzburg model relativistic. There is an extra degree of
freedom because ® and ® become independent rather than being canonically conjugate, as they
are in Landau-Ginzburg theory. In Landau-Ginzburg theory, if we ignore the gauge fields, there is
one spin 0 particle, the Goldstone boson, but if we include the gauge fields, then — as Anderson
had explained in the more sophisticated context of BCS theory — it becomes part of a massive spin
1 particle. In the abelian Higgs model, there is a second and massive spin 0 mode — this is the
fluctuation in the magnitude of ®, which is now usually called the Higgs particle.

Actually, although there is not quite a Higgs particle in usual models of superconductivity — or
in superconducting phenomenology — there is a close cousin. In a superconductor, there are two
characteristic lengths, the penetration depth and the coherence length. They are described in the
Landau-Ginzburg and BCS models of superconductivity and are measured experimentally. (The
difference between a Type I and Type II superconductor has to do with which is bigger.) These are
the analogs of the gauge boson mass and the Higgs boson mass in particle physics. Relativistically,
the rate at which the field decays in space is related to a particle mass, but nonrelativistically
there is no reason for this to happen, and in the Landau-Ginzburg model it doesn’t, in the case of
the correlation length. The Landau-Ginzburg model and the abelian Higgs model are completely
equivalent for static phenomena since they coincide once one drops the time derivatives.

Similar ideas were developed by others at roughly the same time as Higgs. We will just take
a quick look. The paper of Englert and Brout is in fig. 7. This paper is notable for considering
symmetry breaking in non-abelian gauge theory, while previous authors had considered the abelian
case, sometimes saying that this was for simplicity. “The importance of this problem,” they say,
“lies in the possibility that strong-interaction physics originates from massive gauge fields coupled
to a system of conserved currents,” for which they refer to Sakurai. Soon after was the paper of
Guralnik, Hagen, and Kibble (fig. 8), followed by Migdal and Polyakov (fig. 9). The title of Migdal
and Polyakov, “Spontaneous Breakdown of Strong Interaction Symmetry and Absence of Massless
Particles,” shows that they, too, were thinking of the strong interactions as the arena in which
gauge symmetry breaking might play a role.

From here, let us move forward to Kibble in 1966 (fig. 10). After mentioning the example
of superconductivity, Kibble writes “The first indication of a similar effect in relativistic theories
was provided by the work of Anderson, who showed that the introduction of a long-range field,
like the electromagnetic field, might serve to eliminate massless particles from the theory. More
recently, Higgs has exhibited a model which shows explicitly how the massless Goldstone bosons
are eliminated by coupling the current associated with the broken symmetry to a gauge field.” He
then goes on to discuss some important details of symmetry breaking in nonabelian gauge theory.
He explains how it it is possible to have partial breaking of nonabelian gauge symmetry, with some
gauge mesons remaining massless. Like Higgs and some of the others, he does not really say what
the physical application is supposed to be, but he does remark that nature has only one massless
vector particle — the photon — but various (in some cases approximate) global symmetries. At least

this was on the right track.
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It is of interest to inquire whether gauge
vector mesons acquire mass through interac-
tion'; by a gauge vector meson we mean a
Yang-Mills field® associated with the extension
of a Lie group from global to local symmetry.
The importance of this problem resides in the
possibility that strong-interaction physics orig-
inates from massive gauge fields related to a
system of conserved currents.® In this note,
we shall show that in certain cases vector
mesons do indeed acquire mass when the vac-
uum is degenerate with respect to a compact
Lie group.

those vector mesons which are coupled to cur-
rents that “rotate” the original vacuum are the
ones which acquire mass [see Eq. (6)].

We shall then examine a particular model
based on chirality invariance which may have a
more fundamental significance. Here we begin
with a chirality-invariant Lagrangian and intro-
duce both vector and pseudovector gauge fields,
thereby guaranteeing invariance under both local
phase and local y;-phase transformations. In
this model the gauge fields themselves may break
the y, invariance leading to a mass for the orig-
inal Fermi field. We shall show in this case

FIGURE 7. Brout and Englert on gauge symmetry breaking.

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,T C. R. Hagen,i and T. W. B. Kibble
Department of Physics, Imperial College, London, England
(Received 12 October 1964)

In all of the fairly numerous attempts to date to
formulate a consistent field theory possessing a
broken symmetry, Goldstone’s remarkable the-
orem® has played an important role. This theo-
rem, briefly stated, asserts that if there exists
a conserved operator @; such that

[QZ_,A] (x)] =Ektl_jkAk(x),

and if it is possible consistently to take Ekti 3
X(0lAp10)#0, then A]-(x) has a zero-mass par-
ticle in its spectrum. It has more recently been
observed that the assumed Lorentz invariance
essential to the proof? may allow one the hope of
avoiding such massless particles through the in-

troduction of vector gauge fields and the conse-
quent breakdown of manifest covariance.® This,
of course, represents a departure from the as-
sumptions of the theorem, and a limitation on
its applicability which in no way reflects on the
general validity of the proof.

In this note we shall show, within the frame-
work of a simple soluble field theory, that it is
possible consistently to break a symmetry (in
the sense that Z}ktijk(O\Ak | 0)# 0) without requir-
ing that A(x) excite a zero-mass particle. While
this result might suggest a general procedure
for the elimination of unwanted massless bosons,
it will be seen that this has been accomplished
by giving up the global conservation law usually

585

FIGURE 8. Guralnik, Hagen, and Kibble on gauge symmetry breaking.

The next milestone, of course, was that in 1967-8, Weinberg and Salam actually found what
spontaneous gauge symmetry breaking is good for in particle physics. (Their model was a gauge-
invariant refinement of an earlier model by Glashow. That model had W and Z mesons, but lacked
the relationship between their masses and couplings that follows from the spontaneous symmetry
breaking mechanism introduced by Weinberg and Salam.) However, since we have already looked
at quite a few original papers, let us jump ahead to Weinberg’s Nobel Prize address in 1979.

In the passage copied in fig. 11, Weinberg explains quite vividly how — like everyone else in
the 1960’s, it seems — he started by assuming that gauge symmetry breaking was supposed to be

applied to the strong interactions. His detailed explanation actually makes interesting reading. To
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The occurrence of massless particles in the presence of spontaneous symmetry breakdown is
discussed. By summing all Feynman diagrams, one obtains for the difference of the mass
operators My(p) — Mp(p) of particles a and b belonging to a supermultiplet an equation which
is identical to the Bethe-Salpeter equation for the wave function of a scalar bound state of van-
ishing mass (a ‘‘zeron’’) in the annihilation channel ab of the corresponding particles. It is
shown that if symmetry is spontaneously violated in a Yang—Mills type theory involving vector
mesons, the zerons interact only with virtual particles and therefore unobservable. On the
other hand, the vector mesons acquire a mass in spite of the generalized gauge invariance. It
is shown in Appendices A and B that the asymmetrical solution corresponds to a minimal en-
ergy of the vacuum and that C-invariance of the solution implies strangeness conservation

for it.

1. INTRODUCTION

SPONTANEOUS symmetry breakdown related to
an instability of the system under consideration
with respect to an infinitesimally weak asymmetric
perturbation is often encountered in quantum sta-
tistical mechanics (ferromagnetism, superconduc-
tivity, etc.). A large number of such examples has
been analyzed in Bogolyubov’s review. ']

FIGURE 9. Migdal and Polyakov on gauge symmetry breaking.

help the reader understand this passage, I will make the following remarks. If baryon number is
a gauge symmetry, what is the gauge meson? The lightest hadronic particle of spin 1 with the
appropriate quantum numbers is the w meson, or the ¢ meson if one includes strange particles. So
one might think of one of those as a gauge meson. But if baryon number is a gauge symmetry,
perhaps isospin symmetry is a gauge symmetry also. In this case, the lightest candidates for the
massive gauge particles are the p mesons. But bearing in mind that isospin symmetry is part of a
spontaneously broken SU(2) x SU(2) chiral symmetry, perhaps there is also an axial vector triplet
of massive gauge mesons; the A; is the lightest candidate. All this is quite alien to present-day
thinking, and as Weinberg explains, there were a lot of problems: massless p mesons, or no pions, or
explicit (rather than spontaneous) breaking of gauge invariance and therefore no renormalizability,
depending on what assumptions he made.

Then enlightenment dawns. Weinberg explains that “At some point in the fall of 1967, I think
while driving to my office at M.I.T., it occurred to me that I had been applying the right ideas to
the wrong problem. It is not the p mesons that is massless: it is the photon. And its partner is not
the A1, but the massive intermediate boson, which since the time of Yukawa had been suspected to
be the mediator of the weak interactions. The weak and electromagnetic interactions could then be

described in a unified way in terms of an exact but spontaneously broken gauge symmetry.... And
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According to the Goldstone theorem, any manifestly covariant broken-symmetry theory must exhibit
massless particles. However, it is known from previous work that such particles need not appear in a rela-
tivistic theory such as radiation-gauge electrodynamics, which lacks manifest covariance. Higgs has shown
how the massless Goldstone particles may be eliminated from a theory with broken U(1) symmetry by
coupling in the electromagnetic field. The primary purpose of this paper is to discuss the analogous problem
for the case of broken non-Abelian gauge symmetries. In particular, a model is exhibited which shows how
the number of massless particles in a theory of this type is determined, and the possibility of having a
broken non-Abelian gauge symmetry with no massless particles whatever is established. A secondary
purpose is to investigate the relationship between the radiation-gauge and Lorentz-gauge formalisms.
The Abelian-gauge case is reexamined, in order to show that, contrary to some previous assertions, the
Lorentz-gauge formalism, properly handled, is perfectly consistent, and leads to physical conclusions

identical with those reached using the radiation gauge.

I INTRODUCTION

‘HEORIES with spontaneous symmetry breaking

(in which the Hamiltonian but not the ground

state is symmetric) have played an important role in
our understanding of nonrelativistic phenomena like
superconductivity and ferromagnetism. Many authors,
beginning with Nambu,! have discussed the possibility
that some at least of the observed approximate sym-
metries of relativistic particle physics might be inter-
preted in a similar way. The most serious obstacle has
been the appearance in such theories of unwanted mass-
less particles, as predicted by the Goldstone theorem.?
In nonrelativistic theories such as the BCS model, the
corresponding zero-energy-gap excitation modes may
be eliminated by the introduction of long-range forces.
The first indication of a similar effect in relativistic
theories was provided by the work of Anderson,® who
showed that the introduction of a long-range field, like
the electromagnetic field, might serve to eliminate
massless particles from the theory. More recently,

In either case the theorem is inapplicable in the presence
of long-range forces, essentially because the continuity
equation d,j#*=0 no longer implies the time indepen-
dence of expressions like /'@ [{°(x),¢(0)], since the
relevant surface integrals do not vanish in the limit of
infinite volume. (In the relativistic case, the theorem
does apply if we use the Lorentz gauge; but then it tells
us nothing about whether the massless particles are
physical.) It should be noted that the extension or
corollary of the Goldstone theorem discussed by
Streater® also fails in precisely this case. If long-range
fields are introduced, spontaneous symmetry breaking
can lead to mass splitting.

As has been emphasized recently by Higgs,” it thus
appears that the only way of reconciling spontaneous
symmetry breaking in relativistic theories with the
absence of massless particles is to couple in gauge fields.
Another possibility is that Goldstone bosons may turn
out to be completely uncoupled and therefore physically
irrelevant. In this case, however, the Hilbert space
decomposes into the direct product of a nhvsical Hilhert
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F1GURE 10. Kibble on symmetry breaking in nonabelian gauge theory.

this theory would be renormalizable like quantum electrodynamics because it is gauge invariant
like quantum electrodynamics.”

I have been asked whether Weinberg and Salam were the first to use gauge symmetry breaking to
give masses to particles other than gauge bosons. They were the first to generate masses for leptons
in this way. For strong interactions, matters are more complicated. The modern understanding is
that hadron masses come partly from dynamical effects of QCD and partly from the bare masses
of quarks and leptons. (The masses of protons, neutrons, and pions come mostly from the QCD
effects while heavier hadrons containing charm or bottom quarks get mass mostly from the quark
bare masses.) In the modern understanding, it is the quark bare masses, not the part of the hadron
masses coming from QCD effects, that result from gauge symmetry breaking and the coupling to
the Higgs particle. Such a clear statement was however not possible until QCD was put in its
modern form in 1973, enabling the full formulation of the Standard Model. From a modern point
of view, earlier attempts to connect hadron masses to gauge symmetry breaking (as opposed to
spontaneous breaking of global chiral symmetries) mostly did not focus on the right part of the
problem.

The emergence of the Standard Model brings us to the modern era. I will conclude this talk

by sketching briefly a few of the subsequent developments. First we will talk about the strong
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Now, back to 1967. I had been considering the implications of the
broken SU(2) x SU(2) symmetry of the strong interactions, and I thought
of trying out the idea that perhaps the SU(2) x SU(2) symmetry was a
“local,” not merely a “global,” symmetry. That is, the strong interactions
might be described by something like a Yang-Mills theory, but in addition
to the vector @ mesons of the Yang-Mills theory, there would also be axial
vector Al mesons. To give the ¢ meson a mass, it was necessary to insert a

common @ and Al mass term in the Lagrangian, and the spontaneous

breakdown of the SU(2) x SU(2) symmetry would then split the @0 and Al
by something like the Higgs mechanism, but since the theory would not be
gauge invariant the pions would remain as physical Goldstone bosons.
This theory gave an intriguing result, that the Al/0 mass ratio should be
V2, and in trying to understand this result without relying on perturbation
theory, I discovered certain sum rules, the “spectral function sum rules,”
[23] which turned out to have variety of other uses. But the SU(2) x SU(2)
theory was not gauge invariant, and hence it could not be renormalizable,
[24] so I was not too enthusiastic about it. [25] Of course, if I did not insert
the 0-Al mass term in the Lagrangian, then the theory would be gauge
invariant and renormalizable, and the Al would be massive. But then
there would be no pions and the @ mesons would be massless, in obvious
contradiction (to say the least) with observation.

FIGURE 11. A passage from Steve Weinberg’s Nobel Prize Lecture in 1979.

interactions. Since the discovery of asymptotic freedom in 1973, we describe the strong interactions
via an unbroken non-abelian gauge theory with gauge group SU(3), coupled to quarks. The SU(3)
gauge symmetry is definitely unbroken, so at first sight it looks like spontaneous breaking of gauge
symmetry turned out to be the wrong idea for the strong interactions.

There is a mystery, however, in QCD: why don’t we see the quarks? Experiment and computer
simulations both seem to show that the quarks are “confined,” that the energy grows indefinitely
if one tries to separate a quark from an antiquark. Confinement is quite a surprise and I would say
that we still do not fully understand it today. However it was realized in the 1970’s that supercon-
ductivity comes to the rescue again, giving an understandable explanation of how confinement can
happen. An isolated magnetic monopole would have infinite energy in a superconductor because
of the Meissner effect. As sketched in fig. 12, a monopole is a source of magnetic flux, but the
Meissner effect would cause this flux to be compressed into an Abrikosov-Gorkov flux tube, with

an energy proportional to its length.
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Flux Tube

FIGURE 12. In a superconductor, a magnetic monopole (small ball) is the source of a flux
tube. As a result, its energy grows linearly with the size of the system.

The best qualitative understanding that we have of confinement today is to say that it involves a
“dual” to the Meissner effect, where this “duality” somehow generalizes to nonabelian gauge theory
the symmetry of Maxwell’s equations that exchanges electric and magnetic fields. Electric charges
— quarks — are then confined by a “dual Meissner effect.” We do not fully understand this in the
case of QCD, but by now we know various situations in four-dimensional gauge theories in which
something like this happens.

Now we come to the weak interactions. The original Weinberg-Salam model was based on a
weakly-coupled picture with an elementary Higgs field — an elaboration of the Landau-Ginzburg
and Higgs models to include nonabelian gauge symmetry and leptons (and later quarks). But many
physicists for decades have wondered if the analogy with superconductivity is even stronger — if the
breakdown of the electroweak gauge symmetry involves something more like the BCS mechanism
of superconductivity.

There have been numerous motivations, and of course different physicists have had different
motivations at different times. Some simply suspected that the analogy between the weak inter-
actions and superconductivity would turn out to be even closer. Some considered the model with
an elementary scalar field to be arbitrary and inelegant. Another motivation for some was the
fact that the Standard Model is not predictive for lepton and quark masses (and “mixing angles”).
Each mass is a free parameter, determined by the strength of the coupling of the Higgs field to
a given quark or lepton. Maybe a model of “dynamical symmetry breaking,” more like the BCS
mechanism, would give a more predictive model.

Perhaps the most compelling motivation came from the “hierarchy problem.” Although the
electroweak gauge theory with a Higgs field is renormalizable, there is a puzzle about it. In the

action describing the Higgs field
/d4m (D, @D"® — A(|2|* — a*)?) |

the parameter a?, which determines the mass scale of weak interactions, is a “relevant” parameter
in the renormalization group sense. Generic ideas of renormalization theory suggest that a? should
be in order of magnitude as large as the largest mass scale of the theory — probably the mass scale
of gravity or of grand unification of some sort, but anyway much bigger than the mass scale of weak
interactions. By analogy, in condensed matter physics, unless one tunes a parameter — such as the
temperature — one does not see a correlation length much longer than the lattice spacing. Why the
electroweak length scale is so much bigger than the particle physics analog of the lattice spacing is
the “hierarchy problem.”

There is no problem writing down a model that replaces the Higgs field with a pairing mecha-

nism (involving a new “technicolor” gauge symmetry with “techniquarks”) and solves the hierarchy
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problem. There is even an immediate success: such a model can easily reproduce a relationship
between the W and Z masses and the weak mixing angle that was one of the early triumphs of the
Standard Model. However, a serious problem was well-recognized in the late 1970’s: one can argue
that the way the Standard Model gives quark and lepton masses is inelegant and unpredictive, but
at least it works. Simple models of “dynamical electroweak gauge symmetry breaking” have serious
problems giving realistic quark and lepton masses. Of course, people found clever fixes but it never
looked like a match made in heaven.

Experiment began to weigh in seriously in the 1990’s. Neither the Higgs particle nor the new
particles required by “dynamical” models were discovered. But tests of the Standard Model —
especially in eTe™ annihilation — became precise enough that it was possible to say that the original
version of the Standard Model with a simple Higgs field is a better fit than more sophisticated
“dynamical” models. There certainly were still fixes, but people had to work harder to find them.

Probably we all know where this story has reached, at least for now. A particle with properties
a lot like the Higgs particle of the Standard Model was found a year ago with a mass around
125 GeV. It looks like the electroweak scale is weakly coupled, as is possible in part because of
Anderson’s insights about gauge symmetry breaking in 1962. But the hierarchy problem is still
with us. “Dynamical” models that tried to solve it have not been confirmed, and weakly coupled
models — notably based on supersymmetry — that tried to solve it have also not yet been confirmed.
I will just end with a question: When the LHC gets to higher energies in 2015, will this situation

persist or will it be resolved?



