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Abstract
The emergence of complex and fascinating states of quantum matter in the neighborhood of 
zero temperature phase transitions suggests that such quantum phenomena should be studied 
in a variety of settings. Advanced technologies of the future may be fabricated from materials 
where the cooperative behavior of charge, spin and current can be manipulated at cryogenic 
temperatures. The progagating lattice dynamics of displacive ferroelectrics make them 
appealing for the study of quantum critical phenomena that is characterized by both space- 
and time-dependent quantities. In this key issues article we aim to provide a self-contained 
overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the 
ferroelectric quantum critical point can be tuned experimentally to reside at, above or below 
its upper critical dimension; this feature allows for detailed interplay between experiment 
and theory using both scaling and self-consistent field models. Empirically the sensitivity of 
the ferroelectric Tc’s to external and to chemical pressure gives practical access to a broad 
range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom 
like charge and spin can be added and characterized systematically. Satellite memories, 
electrocaloric cooling and low-loss phased-array radar are among possible applications of 
low-temperature ferroelectrics. We end with open questions for future research that include 
textured polarization states and unusual forms of superconductivity that remain to be 
understood theoretically.
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1. Introduction and FAQs

At first sight, the links between ferroelectrics, quantum phase 
transitions and quantum criticality may not be obvious. After 
all, ferroelectrics are mostly non-metallic materials that are 
often studied towards specific functionalities at room temper-
ature, whereas a key motivation for research in quantum phase 
transitions and quantum criticality is their links with novel 
metallic behavior and exotic superconductivity. Our principal 
aim in this key issues article is to encourage more communi-
cation between researchers in these two mainly independent 
communities. Let us begin by addressing frequently asked 
questions that might be posed by curious newcomers to the 
field in a colloquial fashion before presenting more detail in 
the subsequent parts of this article.

Aren’t quantum fluctuations only important at T = 0 K? 
Let’s start by discussing what is meant by quantum fluctua-
tions. We can begin by thinking about the amplitude fluc-
tuations of a one-dimensional simple harmonic oscillator as 
a function of temperature, and let’s take a look at figure  1 
together. Here we see that, setting the constants ! and kB to be 
unity, the important energy-scales are the temperature, T, and 
the oscillator frequency Ω. If T is much greater than Ω, then 
the variance in the amplitude, ⟨x2⟩, scales with T and Ω drops 
out completely. In this case, the total variance results from 
purely classical (thermal) fluctuations and in figure  1 their 
contribution to ⟨x2⟩ is indicated by a red line. However for 
lower temperatures, particularly in the interval 0 < T ! Ω, 
there is another contribution to ⟨x2⟩ above this classical red 
line (see figure 1) due to quantum fluctuations (blue line in 
figure  1). The total variance then becomes the sum of the 
quant um and the classical components, where at T = 0 only 
the quantum component survives.

Fine, but what does this behavior of one simple harmonic 
oscillator have to do with quantum phase transitions? 
We are just getting to this conceptual connection. Order 
parameter fluctuations play a key role at phase transitions, 
and we can consider the variance of each of their Fourier 
components one at a time. We can call each of these Fourier 
components a mode of wavevector q whose behavior could 
be mapped onto that of single harmonic oscillator of ampl-
itude x where Ω would be the oscillator frequency of the mode 
in question. Now we are back to our figure 1 where the full 
variance ⟨x2⟩ is plotted as a function of temperature for a par-
ticular mode of wavevector q. At a continuous phase transition 

the (mode) stiffness K vanishes for modes with wavevectors 
close to the ordering wavevector, so that the red and blue 
lines in figure 1 becomes vertical and the amplitude fluctua-
tions diverge. If this occurs at a temperature T ≫ Ω, then the 
trans ition may be driven by essentially classical fluctuations 
and is between high to low entropy states as a function of 
decreasing temperature. However at low temperatures where 
0 < T ! Ω, we have classical-plus-quantum (C  +  Q) fluctua-
tions and here we are very interested in how these ‘hybrid’ 
fluctuations lead to behavior and ordering distinct from those 
driven by their purely classical counterparts. Again K at the 
ordering wavevector goes to zero at the transition but now, 
in addition to the classical contribution, there is a quantum 
component to ⟨x2⟩. Of course at strictly T = 0 the fluctua-
tions are purely quant um and the entropy change is zero for an 
equilibrium system. Therefore purely (equilibrium) quantum 
phase transitions are really transformations from one type of 
ordering to another. We emphasize this point because the term 
‘quant um disordered state’, that often appears in phase dia-
grams, is ambiguous and possibly confusing; it may only have 
useful meaning in cases where there is a finite ground-state 
degeneracy in violation of the third law of thermodynamics.

Here you are telling us that quantum fluctuations increase ampl-
itude fluctuations at low temperatures. However Einstein and later 
Debye showed that quantum fluctuations reduced the specific heat 
from its classical value and that was a big success for the quantum 
theory. How does this fit in with what you are saying? 
You are of course completely correct that at low temper atures 
the specific heat of a solid is reduced compared to its classi-
cal constant value, and indeed this may seem counterintuitive 
given what we’ve just told you. However we can in fact under-
stand this behavior by looking again at figure 1. In our simple 
approach the energy is proportional to the variance of ampl-
itude fluctuations, so the specific heat is then its derivative. 
We see that the slope of the variance in the ampl itude (⟨x2⟩) 
is higher at temperatures T ≫ Ω than at T ≪ Ω, and indeed 
it is actually relatively flat in the approach to zero-temper-
ature. This means that the specific heat will be significantly 
lower at low temperatures compared to its constant value at 
temper atures T ≫ Ω and we hope this answers the question. 
In figure 2 you see the specific heat cP of diamond that has a 
Debye temperature exceeding one thousand degrees (Kelvin); 
at room temperature cP is already temperature-dependent and 
thus the effects of quantum fluctuations are observable with-
out any fancy cryogenics!

As you suggest, the heat capacity is valuable in bringing 
out the dramatic quantum corrections to classical behavior that 
can extend to room temperatures and above. However it is also 
important to note that the heat capacity does not reflect the 
total variance and depends only on the Bose function contrib-
ution; of course we are neglecting any temperature-depend-
ence of Ω which would require a more extended discussion.

So then why do we care about the total variance anyway if it 
isn’t important for observable quantities? 
We agree that this is not obvious from our specific heat dis-
cussion. As we can see in figure  1, the total variance has 

Contents

 1. Introduction and FAQs .....................................................2
 2. Quantum criticality basics ................................................6
 3. Ferroelectrics necessities .................................................8
 4. The case of SrTiO3 to date .............................................12
 5. A flavor for low temperature applications......................14
 6. Open questions for future research ................................18
  Acknowledgments ......................................................... 20
  References ..................................................................... 20

Rep. Prog. Phys. 80 (2017) 112502



Key Issues Review

3

both classical and quantum components, where their rela-
tive contributions change as a function of temperature. Just 
as the classical part drives phase transitions for T ≫ Ω, it is 
the quantum part that drives phase transitions for T ≪ Ω. We 
should add that the total variance of the amplitude fluctuations 
can be probed, for example, by neutron scattering experiments 
where the neutron loses energy to the system so that both the 

zero-point and the Bose function contributions are measured. 
Again we stress that it is the total variance that is crucial for 
the ‘disruption’ of the initial form of order.

What does quantum criticality mean? 
In a nutshell, quantum criticality refers to a second-order 
phase transition that occurs at zero temperature. More gener-
ally, it’s probably easiest to answer your question by com-
paring quantum criticality to its classical counterpart. At a 
continuous phase transition the inverse order param eter sus-
ceptibility vanishes so that the order parameter correlation 
function becomes scale-invariant. This means that it decays 
with distance and time not exponentially but rather gradu-
ally in a power-law form. The thermodynamic variables 
depend only on scale-invariant correlation functions in space 
for classical criticality, but crucially on both space and time 
for quant um criticality. This leads to new critical exponents 
that are quantum in nature depending on details of the order 
parameter dynamics.

In ferroelectrics classical criticality is difficult to observe in 
practice. Why isn’t the same true for quantum criticality? 
As you suggest, the criteria for observing classical and 
quant um criticality are quite different. For example classical 
criticality just below Tc is defined as the region near a finite 
temperature phase transition where fluctuations in the order 
parameter are comparable to the average of the order param-
eter itself. Empirically it has been found that mean-field theory 
works very well near classical ferroelectric phase trans itions, 
though of course most are first-order. Actually many ferro-
electrics reside close to tricritical points at ambient pres sure. 
Therefore it’s not surprising that pressure-tuned ferroelectric 

Figure 1. Amplitude variance of a simple harmonic oscillator where Ω and K are its frequency and stiffness respectively.

Figure 2. Heat capacity of diamond versus temperature. Note that 
at room temperature it is well below the classical Dulong–Petit 
value, indicating the importance of quantum effects at non-
cryogenic temperatures. [1] John Wiley & Sons. Wiley-VCH, 2015.
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transitions are continuous, at least in practice. More gener-
ally, continuous ferroelectric quantum phase transitions are 
expected if one is willing to tune not only pressure or compo-
sition but also the electric field. As an aside, we should also 
note that textured states are known to reside near first-order 
quantum phase transitions, so they can be very interesting too.

What defines the quantum critical region? 
It’s important to realize that temperature is not a simple tuning 
parameter at a quantum phase transition. Indeed temper ature 
provides the low-energy cutoff for quantum fluctuations where 
the associated time-scale is defined through the Heisenberg 
uncertainty relation ∆t ∼ !

kBT . In this sense temperature plays 
the role of a finite-size effect in time at a quantum critical 
point. The quantum critical region is defined by the interplay 
between the scale-invariant order parameter fluctuations and 
the temporal boundary conditions imposed by finite temper-
ature; most importantly it is accessible exper imentally with 
distinct observable signatures.

Now can you please explain why d + 1 is the effective 
dimension? 
In the case of purely classical fluctuations, the amplitude for 
each mode of wavevector q depends only on the temperature 
and not on its dynamical properties, as we’ve already noted. 
Therefore its statistical mechanical description involves only 
the d dimensions of wavevector (or of real) space. However 
when quantum fluctuations are present, the mode frequency 
as well as the temperature are important for the statistical 
mechanical characterization; for example see the expression 
for the variance in figure 1. In general there is a distribution 
of frequencies ω associated with each mode that reduces to a 
δ-function in the special case of a simple harmonic oscillator 
where ω = Ω. More generally each mode has a power spectrum 
distribution of frequencies that results in a statistical mechani-
cal description involving not only the sum over wavevectors but 
also over frequency ω. The effective number of dimensions to 
be associated with the dynamics is dependent on the frequency-
wavevector dispersion relation. If the dispersion is linear, as it is 
for ferroelectrics, space and time enter the statistical description 
on equal footing leading to an overall effective dimensionality 
of ‘d + 1’ referring to d space and 1 time dimensions. Another 
subtlety is that the effective time dimension is of finite size 
except in the limit T → 0 as we’ve just discussed.

New functionalities are of great interest to the ferroelectrics 
community, so are there useful low-temperature applications 
for these materials that could be pursued in parallel to studies 
of quantum criticality? 
The trends for future devices are faster, lighter and smaller. 
Ferroelectric films are used as both active and passive memory 
elements where data is stored as the presence (or absence) of 
charge. Reduced operating temperatures lead to lower leakage 
currents and to increased breakdown fields, both crucial for 
keeping competitive with faster access and high-density needs.

Electrocaloric cooling, the change in temperature with 
applied electric field, could be developed to access cryogenic 
temper atures just as its magnetic counterpart, magnetocaloric 

cooling, is often used to access millikelvin temperatures and 
below.

There was some work exploring cryogenic electrocaloric cool-
ing some time ago that was not pursued as the observed effects 
were too small for practical use...what has changed since then 
to make you optimistic about this application? 
In a nutshell, current thin-film and multicapacitor technolo-
gies means that we can increase breakdown fields, par ticularly 
at low temperatures without loss of effective volume. It is cer-
tainly much easier and cheaper to apply electric rather than 
magnetic fields, and we’ll have more to say about electrocalo-
ric cooling shortly.

We should also note that the radiation-hardness of ferro-
electric memories makes them ideal for satellite applications 
where there is repeated passage through the Van Allen belts 
and naturally cold temperatures! Indeed in efforts to develop 
radiation-tolerant electronics, NASA has performed on-orbit 
tests of ferroelectric random access memories, FRAMs, on 
micro-satellites (see figure 3). Furthermore NPSAT1, a small 
satellite built by the Naval Postgraduate School with FRAMs 
on board, is due to launch on the SpaceX Falcon heavy some-
time in 2017.

Another potential application for cryogenic ferroelectrics 
is in phased array radar that would replace large, heavy radar 
antennae that mechanically rotate. Beam steering would be 
achieved electrically by varying the phase of a voltage train 
with a field-tuned LC circuit. In order for such array radar 
devices to be competitive with their mechanical analogues 
the dielectric loss must be very low, about 0.01%, and thus 
this should be a niche for cryogenic ferroelectrics. We should 

Figure 3. (Left) Artist’s rendition of NASA’s Fast and Affordable 
Science and Technology Satellite (FASTSAT) with ferroelectric 
randon access memory (FRAM) for radiation robustness reprinted 
from MacLeod et al [2, 3] 2012, reprinted by permission of the 
publisher (Taylor & Francis Ltd, http://www.tandfonline.com.); 
(Inset) Naval Postgraduate School scientists Panholzer and Sakoda 
with several structural pieces of Naval Postgraduate School Satellite 
1 with FRAM [4] due to launch on a STP-2 mission in 2017 on 
a SpaceX Falcon Heavy rocket [5] (US Navy Photo by Javier 
Chagoya, reprinted from [4] with permission and thanks to Chagoya 
and the NPS Public Affairs Office).
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point out that the entire device would not have to be at low 
temperatures...on-chip electrocaloric cooling for the capacitor 
could do the job nicely!

So it sounds like there are several low-temperature applica-
tions for ferroelectrics that can be explored. Now back to a 
more general question. What from our knowledge of magnet-
ism can be transferred to ferroelectricity? 
There are indeed similarities between ferroelectrics and fer-
romagnets, but there are also key differences. For example, 
the polarization is a classical object and thus is not quantized 
in contrast to the spin in a magnet. Crystal fields lead to strong 
anisotropy in ferroelectrics whereas magnetic anisotropy is 
usually orders of magnitude smaller and is principally due to 
spin-orbit coupling; this leads to different domain structures 
in these two distinct classes of materials. The dynamics in fer-
roelectrics are dominated by propagating vibrational modes, 
whereas in magnets there is spin precession. These are just 
some of the reasons one has to be careful going back and forth 
between magnetism and ferroelectricity, and we’ll be discuss-
ing this in more detail shortly.

Most of our experiments in quantum criticality are on metallic 
systems and most ferroelectrics are insulating. So where is the 
common ground? 
We usually emphasize the fact that ferroelectrics are analo-
gous to ferromagnetic insulators. However in the present con-
text, they have interesting features in common with itinerant 
magnets. In a ferroelectric at high temperatures, the polariza-
tion is not well-defined due to dynamical fluctuations in the 
separation between charges. Similarly in an itinerant magnet, 
the magnetic moment is not well-defined at high temper atures 
since the number of electrons in a unit cell is constantly fluc-
tuating. So in that sense the two are not that different. We 
should add that there also have been studies of doped bulk 
strontium titanate that indicate very interesting metallic and 
superconducting behaviors. Indeed doped strontium titanate 
is the superconductor with one of the lowest carrier densities 
known to date. Its Fermi temperature is lower than its Debye 
temperature, a feature also seen in many heavy fermion super-
conductors. Thus it most probably cannot be described by a 
conventional theory of superconductivity.

So, given our discussion, what can ferroelectricity bring to the 
study of quantum criticality? 
Empiricially the sensitivities of the ferroelectric transition 
temperatures to pressure are remarkable! As an example, in 
order to cover 300 K changes in magnetic Tc’s, we must usu-
ally apply hundreds of kilobars, whereas in ferroelectrics the 
same temperature range can be achieved with more than a fac-
tor of ten less in pressure. Furthermore the electric field as 
another tuning parameter offers tremendous advantages over 
its magnetic counterpart, as an electric field is significantly 
easier to apply and doesn’t require a lot of extra coils, spe-
cial cells etc. Also, through gated control of carriers, there is 
another type of continuous fine-tuning available without the 
need for multiple samples at different doping levels. In the 
quantum regime, as we discussed earlier, a system’s thermo-
dynamic behavior involves both space and time and hence 

dynamics; since the dynamics of ferroelectrics and ferromag-
nets are different, their quantum critical behavior will also be 
distinct. More generally, another class of materials for experi-
ment is crucial as we collectively explore the possibility of 
universality in quantum critical phenomena.

So we see, there is quite a lot to discuss! We note that there 
has been tremendous ‘historical entanglement’ here between 
the fields of ferroelectrics and criticality; the first logarithmic 
corrections to mean-field exponents due to fluctuations at mar-
ginal dimensionality were calculated for a uniaxial ferroelec-
tric [6]. Similarly the transverse-field Ising model, one of the 
simplest models demonstrating a quantum phase transition, was 
first developed to describe a transition in the ferroelectric potas-
sium dihydrogen phosphate KH2PO4 (often denoted as KDP) 
[7]. Indeed historically there have been several ‘waves’ of inter-
est in low-temperature paraelectrics that are not completely 
chronologically distinct; here, in the interest of compactness, 
we refer the curious reader to previous reviews to discuss these 
developments [8, 9]. In the 1950s, perovskites like SrTiO3 and 
KTaO3 were of experimental interest since their dielectric prop-
erties were so different from those of (ferroelectric) BaTiO3. 
Next, in the late 60s through the mid-80s, with the develop-
ment of renormalization group, they were settings to test lattice 
model calculations of quant um critical exponents and to study 
the importance of long-range dipolar interactions in different 
dimensions. More recently there has been tremendous inter-
est in the interplay of polarization with other degrees of free-
dom, so there has been much effort towards modelling phase 
diagrams of mat erials for a wide range of temperatures with 
the aim of raising interesting low-temperature phases to room 
temperature for appropriate applications [10]. A closely related 
field is that of ferroelastics, the mechanical analogue of ferro-
electricity and ferromagnetism, that is associated with shape 
memory effects [11].

In this article, we’d like to encourage yet another ‘wave’ of 
interest in the low temperature behavior of paraelectrics/ferro-
electrics, one motivated by the quest to discover new quant um 
states of matter near quantum phase transitions [12–15]. 
Materials near their displacive ferroelectric quantum trans-
itions are particularly elegant examples of quantum criticality 
[16–22] with few degrees of freedom and propagating dynam-
ics that distinguish them from their magnetic counterparts. 
Furthermore, as we’ll discuss, they are dimensionally tunable 
so they can be studied experimentally and theoretically at, 
above and below their upper critical dimensions. Additional 
degrees of freedom like spin and charge can be added and 
characterized systematically in these materials, leading to rich 
phase behavior as yet mostly unexplored.

Let’s not get ahead of ourselves. To ensure that everyone 
is roughly on the same page, we aim for a self-contained arti-
cle with many references. We apologize in advance to any 
researchers whose work has been inadvertently overlooked, 
and we hope that our bibliography will give the inquisitive 
reader a good starting point to explore topics of interest in 
more depth. We begin with ‘quantum criticality basics’ in sec-
tion 2 and then continue in section 3 to ‘ferroelectrics neces-
sities’. Then section  4 we discuss the specific case of the 
material SrTiO3 and its behavior at low temperatures. ‘a flavor 
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for low temperature applications’ is the next section 5 and we 
end section 6 with several open questions for future research.

2. Quantum criticality basics

Our aim here is to present key ideas of quantum criticality with 
minimal formalism to those new to the field, using familiar 
concepts whenever possible; naturally we refer the reader eager 
for more detail to a number of excellent reviews [12–15, 23–
25]. In particular our focus will be the temper ature behavior of 
observable quantities near a quantum critical point, eventually 
associated with ferroelectricity; this goal will guide our discus-
sion. We are all familiar with classical phase transitions where 
the order parameter develops at a characteristic critical temper-
ature. This standard picture assumes purely classical (thermal) 
fluctuations which is certainly appropriate for the temperatures 
of general interest. As we’ve just discussed in the Introduction, 
quantum fluctuations also contribute to order parameter fluc-
tuations of modes with characteristic frequencies of the order 
of or greater than the temperature; here for presentational sim-
plicity we have set the constants ! = kB = 1. However if, as 
T → 0, the fluctuation-selection of different ground states is 
enhanced by another tuning parameter, g, then there is the pos-
sibility of a T = 0 continous quantum phase transition.

Let’s resume our previous discussion of order parameter 
fluctuations where we treated each Fourier mode as a sim-
ple harmonic oscillator of amplitude x with frequency Ω. The 
total variance in the mode amplitude is then

⟨x2⟩ =
{

nΩ +
1
2

}
Ω χ (1)

where nΩ refers to the Bose function and χ = 1
K (= Re χω=0) 

where K is the relevant spring stiffness or elastic constant. We 
recall that for a simple harmonic oscillator

Im χω =
π

2
ω χ δ(ω − Ω) (ω > 0) (2)

so that we can rewrite (1) as

⟨x2⟩ = 2
π

∫ ∞

0
dω

{
nω +

1
2

}
Im χω . (3)

We note that this link between the variance of amplitude fluc-
tuations and the imaginary part of the response, here derived 
for a simple harmonic oscillator, is actually a much more 
general result associated with the fluctuation-dissipation 
(Nyquist) theorem [26].

We can generalize (3) to a sum over all modes labelled 
by wavevector q, for example, in the entire Brillouin zone. 
Let us now transition to the amplitude of the scalar order 
parameter φ that here is a (dipole) moment density that can 
be either magnetic or electric; we use this terminology for 
simplicity to avoid confusion with other common symbols 
often associated with pressure. Then, following our previous 
argument, the variance of the amplitude fluctuations of the 
moment is

⟨δφ2⟩ = 2
π

∑

q

∫ ∞

0
dω

{
nω +

1
2

}
Im χqω (4)

where φ = φ+ δφ, φ is the average, ⟨δφ⟩ = 0 and

Im χqω =
π

2
ω χq δ(ω − ωq) (ω > 0) (5)

in the propagating limit where ωq is the oscillator frequency 
of the mode of wavevector q; naturally more general power 
spectra are also possible [27].

Equation (4) is composed of a strongly temperature-
dependent contribution ⟨δφ2

T⟩ involving the Bose factor nω; 
the remainder (⟨δφ2

ZP⟩ involving the factor 1
2 instead of nω) is 

due to ‘zero-point’ fluctuations. Here we focus on ⟨δφ2
T⟩ since 

it is dominant in determining the temperature-depend ence of 
the observable properties of interest here. We note that the 
zero-point contribution mainly affects the T = 0 properties 
and as noted previously can drive a quantum phase trans ition; 
in particular here it is assumed just to renormalize the under-
lying parameters of the free energy-energy expansion in the 
vicinity of the zero-temperature transition [26] that we’ll pre-
sent shortly. Let us now return to equation (4). At high temper-
atures (T ≫ ω), nω ≈ T

ω; invoking causality in the form of the 
Kramers-Kronig relations, we obtain a generalized equiparti-
tion theorem [26]

⟨δφ2
T⟩ ≈ T

∑

q<qBZ

χq (T ≫ ωq for q < qBZ). (6)

Here we see that the dynamics drop out completely of the clas-
sical equilibrium description. We also note that in (6) we have 
a d-dimensional wavevector summation over the Brillouin 
zone that implies a d-dimensional theory in real space.

By contrast, in the regime (T ≪ ω) where quantum effects 
are important, nω ≈ e−ω

T  and the dynamics remain. In order to 
proceed with our treatment of (4), we therefore must consider the 
dispersion ωq; please see figure 4. In particular we’ll get a purely 
classical result, (6), if all the modes in the Brillouin zone are 
excited; otherwise the modes will be classical up to a wavevec-
tor cutoff determined by quantum mechanics (see figure  4). 
The relevant wavevector scales are the Brillouin zone (qBZ) and 
the thermal (qT) wavevectors, where the latter’s temper ature-
dependence, via the dispersion ωq ∝ qz for low q, is

qT ∝ T
1
z (7)

Figure 4. Important wavevectors and the dispersion ω ∝ qz.

Rep. Prog. Phys. 80 (2017) 112502



Key Issues Review

7

and we note that 1
qT

 is a generalized deBroglie wavelength 
that correponds to the usual free-particle case when z = 2. 
We emphasize that the smaller of the two wavevector scales 
qT and qBZ serves as a cutoff for the classical fluctuations. If 
qT < qBZ then not all modes in the Brillouin zone are ther-
mally excited; in this case the dynamical exponent enters (4) 
via qT and thus quantum effects contribute to the variance of 
the order parameter fluctuations.

Let us now apply these ideas towards analyzing (4) when 
the important cutoff is qT. We revisit the most strongly temper-
ature-dependant part of the ω-integral in (4), breaking it up 
into two separate parts as approximately

I = I1 + I2 ≈
∫ T

0
dω

(
T
ω

)
Im χqω

+

∫ ∞

T
dω e−

ω
T Im χqω .

 

(8)

We note that for q < qT  the delta function in (4) and (5) 
ensures that only I1 contributes in (8); for q > qT , I1 is zero 
and I2 involves an exponential damping factor and thus can 
be ignored to leading order. Therefore, using Kramer–Kronig 
relations, we can write (4) as

⟨δφ2
T⟩ ≈ T

∑

q<qT

χq (T ≪ ωq for q < qT). (9)

where the dynamics are present via (7). In this approach, the 
key distinction between the two moment variances, (6) and (9),  
lies in their wavevector cutoffs: in the purely classical case 
(6) it is a constant (qBZ), whereas when quantum effects are 
important, (9), the dynamical exponent z enters through qT.

Using the Landau theory of phase transitions (also called 
the Landau-Devonshire theory in the area of ferroelectric 
phase transitions) [26, 28, 29] combined with (6) and (9), 
we can relate the variance ⟨δφ2

T⟩ to the susceptibility χ, an 
observable quantity [22, 30]. In the magnetic and ferroelectric 
cases of interest here,

χ−1
q ∝ κ2 + q2 (10)

where κ is the inverse correlation length so that in the limit of 
q → 0 we have

χ−1 ∝ κ2. (11)

We recall that Landau theory is a symmetry-based descrip-
tion of macroscopic properties near a phase transition; here 
we will be considering behavior on length-scales greater or 
equal to 1

qT
. This coarse-graining ensures that the main effects 

of zero-point fluctuations are absorbed in the Landau coef-
ficients but that thermal effects show up through the fluctua-
tions of the order parameter field coarse-grained over 1

qT
. We 

assume that this scale is large enough so that a Taylor expan-
sion of the free energy is still reasonable for our applications.

The Landau free energy density for a system with moment 
φ and conjugate field E is

f =
1
2
αφ2 +

1
4
βφ4 +

1
2
γ|∇φ|2 − Eφ (12)

where α → 0 at the transition and β and γ are positive con-
stants for a continuous phase transition to a uniformly ordered 
state that we wish to consider. Minimizing this free energy 
with respect to the order parameter φ, we obtain

E = αφ+ βφ3 − γ∇2φ. (13)

Solving for φ in (13), we obtain its most probable value associ-
ated with the maximum of its probability distribution. In order to 
determine the observed moment, we consider the effects of fluctu-
ations due to a random (Langevin) field added to E. More specifi-
cally we must average over the random fluctuations in (13) using 
φ → φ+ δφ where φ is the average and ⟨δφ⟩ = 0; we obtain

E = (α+ 3β⟨δφ2⟩)φ+ γ∇2φ (14)

to lowest order where we note that the variance term arises 
from the anharmonic effects of the cubic term in the equa-
tion of state. In the limit of small φ and E, we can Fourier 
transform this expression to obtain

χ−1
q = (α+ 3β⟨δφ2⟩) + q2. (15)

Taking the expression (15) in the q → 0 limit and again 
retaining the most strongly temperature-dependent terms, we 
find that

lim
T→0

κ2 ∝ ⟨δφ2
T⟩ (16)

where we have assumed a quantum critical point (QCP) so 
that α → 0 as T → 0.

The careful reader may ask why we are distinguishing 
between the most probable and the average (observed) value 
of φ, and this question can be addressed by discussion of 
equation  (15). If the coarse-graining underlying our Landau 
theory is macroscopic, then the q phase space and thus the 
variance is small, except in the Ginzburg regime to be defined 
below, so that the the most probable and the average values 
are essentially identical. However, as we have already noted, 
our coarse-graining is mesoscopic and not macroscopic and 
therefore we must include the variance in our calculations. An 
alternative way to address this issue is to recall that the true 
equation of state is found by averaging over the most probable 
one [31]; for a Gaussian theory of course the average and the 
most probable values of φ are identical. Finally we emphasize 
that (16) is only valid near a Tc = 0 phase trans ition since for 
a nonzero Tc there are additional terms proportional to Tc ̸= 0 
so that this expression of proportionality no longer holds [30].

We can now combine (9), (10) and (16) to determine the 
temperature-dependence of the susceptibility near a quantum 
critical point; towards this goal, we write

κ2 ∝
∑

q<qT

T
κ2 + q2 ≈ T

∫ qT

κ

qd−1

q2 ≈ T qd−2
T

{
1 −

(
κ

qT

)d−2
}

.

 (17)
where, using qT ∝ T

1
z , we are tempted to neglect the κqT

 term 
on the right-hand side of (17) and write

χ−1 ∝ κ2 ∝ T
(d+z−2)

z . (18)

Equation  (18) shows that the quantum critical exponent 
for the susceptibility is d+z−2

z  that can be compared to the 
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classical value of unity (e.g. the Curie susceptibility) outside 
the Ginzburg regime. Now we can ask, when is this approach 
valid? We can answer this question by rearranging (17) to yield

(
κ

qT

)2

∝ T
(d+z−4)

z

{
1 −

(
κ

qT

)d−2
}

. (19)

From (19), we see that 
(

κ
qT

)
→ 0 as T → 0 if deff ≡ d + z > 4; 

in this case the inverse susceptibility in the approach to a QCP 
has the temperature-dependence displayed in (18) and no fur-
ther fluctuation effects need to be considered. dupper

space = 4 − z 
is thus the upper critical spatial dimension of this theory. An 
analogous treatment leads to dupper = 4 for the purely classical 
description [13, 30]; it is more complicated than the T → 0 
case due to the presence of more finite terms, so here we will 
simply state the result.

Let us now return to (17) and (19) with cutoff qT. It is as if 
the frequency (or time) dimension is equivalent to z wavevec-
tor (or space) dimensions through the dispersion relation that 
relates frequency to z factors of wavevector (ω ∝ qz). Perhaps 
it is easier to state that the inclusion of dynamics in quantum 
critical phenemona theory reduces the upper critical dimen-
sion from 4 in the classical limit (where dynamics can be 
ignored) to 4 − z (where dynamics must be considered). From 
this standpoint, we are usually above the upper critical dimen-
sion at a quantum phase transition whereas we are below it for 
its classical counterpart.

We have already noted that the frequency dimension is 
truncated by the Bose function and can be envisioned to have 
a finite-size of order T, so that the corresponding time dimen-
sion is of finite-size of order 1

T . The crucial point here is that 
the role of temperature near a quantum critical point is to con-
strain the temporal dimension; for d < dupper

space = 4 − z, thermal 
effects can be treated compactly via the ideas of finite-size 
scaling. More generally, we note that the frequency integra-
tion in (4) can be performed by contour integration where 
the poles for the Bose function are imaginary [27]. This is 
an alternative to the real-frequency and real-time description 
given here, and it yields the same results mathematically.

3. Ferroelectrics necessities

So why study the influence of quantum effects in materials 
with ferroelectric tendencies? Before addressing this ques-
tion, let us familiarize ourselves with key features of ferro-
electrics (FE); here we emphasize aspects important to our 
topic at hand, referring the reader eager for further informa-
tion to several detailed reviews and books [9, 28, 32–39].

From a working ‘engineering’ standpoint, a ferroelectric is 
a material that has a spontaneous polarization that is switchable 
by an electric field of practical magnitude; in a finite system the 
polarization is defined as the dipole moment per volume aver-
aged over the unit cell volume [37]. In figure 5, the link between 
ferroelectrics, pyroelectrics, piezoelectrics and di electrics is 
presented graphically. In piezoelectrics an applied mechani-
cal stress results in a voltage and vice versa [28, 32, 33, 36]. 
A change in temperature causes an electrical polarization in a 
pyroelectric [28, 32, 33, 36] and it is the practical switchabil-
ity of this polarization that distinguishes a pyroelectric from a 
ferroelectric [36]. Inversion but not time-reversal symmetry is 
broken at a ferroelectric trans ition. The development of a spon-
taneous polarization results from electric dipoles that are clas-
sical and non-relativistic; they are spatially extended within the 
unit cell. A ferroelectric displays a polarization-electric field 
hysteresis that is analogous to the magnetization-magnetic field 
hysteresis measured in magn etic materials. Because the polari-
zation is the electric dipole moment per unit volume it has the 
units of charge/area [28]. Only the relative polarization, not its 
absolute value, is measured and this is usually performed by 
integrating a switching current [37].

Figure 5. Venn diagram indicating graphically the relationship 
beween ferroelectrics, pyroelectrics, piezoelectrics and dielectrics. 
Applied stress and temperature changes lead to electrical 
polarization in piezoelectrics and in pyroelectrics respectively 
[28, 32, 33, 36]; the switchability of this polarization in a field of 
practical magnitude (and is less than the breakdown electric field) is 
what distinguishes a ferroelectric from a pyroelectric [36].

Quantum criticality: key concepts

 • The dynamical properties of the order-parameter 
fluctuations affect the equilibrium thermodynamic 
properties in the quantum critical regime (in contrast 
to their classical counterparts where only thermody-
namic properties usually only depend on statics).

 • The dynamical exponent z, defined by the dispersion 
relation (ω ∝ qz) at the quantum critical point, plays 
an important role in quantum critical phenomena.

 • The effective dimensionality, deff = d + z, is the sum 
of the spatial and temporal dimensions, where the 
latter is represented by the dynamical exponent.

 • Near a quantum critical point (QCP), temperature acts 
as a boundary condition on time and not as a simple 
tuning parameter.

 • There exists a finite-temperature quantum critical 
region near a QCP where there is a gapless dispersion, 
qT ≪ qBZ and qT ∝ T

1
z .

 • At sufficiently low temperatures near a QCP, the 
temperature-dependence of the inverse susceptibility 
is

χ−1 ∝ T
d+z−2

z (d + z > 4)

  (with weak logarithmic corrections for d + z = 4)
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Qualitively there are two types of ferroelectric transitions 
[28]: those driven mainly by amplitude fluctuations (displacive) 
and those driven mainly by angular fluctuations (order–disorder) 
at atomic scales. In the latter case, the entropy change at the trans-
ition is higher than in the former situation. At low temperatures, 
particularly as T → 0, ferroelectic trans itions are predominantly 
displacive and we’ll return to this topic when we discuss analo-
gies with itinerant magnetism in the next section. Here we are 
implicitly discussing ionic ferroelectricity where the polarization 
results from ionic displacements, though we do note ‘electronic 
ferroelectricity’ in molecular crystals where the polarization is 
due to the ordering of electrons [40]. We emphasize that ionic fer-
roelectrics can be order–disorder and/or displacive in their char-
acter. In these ferroelectics, strong coupling of the polarization 
and the lattice often leads to first-order transitions, both of order– 
dis order and displacive varieties.

In conventional (ionic) ferroelectrics, the electric dipoles 
associated with the spontaneous polarization are produced 
by atomic rearrangements and they develop long-range 
order at a ferroelectric transition. Indeed the soft-mode 
theory of ferroelectricity [28, 41–43], a lattice dynamics 
description, links the diverging dielectric response with a 
vanishing phonon frequency and can indeed be viewed as 
an early model of quantum criticality. We can glean a flavor 
for the soft-mode approach by considering the frequency-
dependent electrical permittivity, ϵω of a simple diatomic 
harmonic lattice

ϵω = ϵ∞ +
ϵ0 − ϵ∞

1 − ω2

ω2
TO

 (20)

where ϵ0 and ϵ∞ refer to the permittivities at zero (static) and 
infinite frequencies respectively. In the absence of free charge, 
the zero and the pole of ϵω, respectively, determine the longi-
tudinal and transverse optical mode frequencies ωLO and ωTO 
resulting in the relation [34, 44]

ϵ0

ϵ∞
=

(
ωLO

ωTO

)2

 (21)

that links the softening of a polar (transverse optical) phonon 
to the development of ferroelectricity.

This minimalist approach to soft-mode theory can of course 
be generalized to include anharmonicities and many polar 
modes where the frequencies are either measured [43] or cal-
culated using first-principles methods [45–47]. We emphasize 
that a finite spontaneous polarization can only exist in a crys-
tal with a polar space group [45], though this does not ensure 
its switchability in a practical electrical field. A structural sig-
nature of ionic ferroelectricity is that the finite polarization 
crystalline configurations result from small polar distortions 
of a high-symmetry (paraelectric) structure so that there is a 
simple pathway between them [45]. In figure 6 we display the 
crystal structure of the well-studied perovskite ferroelectric 
BaTiO3, its paraelectric (cubic) structure and two of its polari-
zation states. From a first-principles perspective, a fingerprint 
of ferroelectricity is the presence of unstable polar phonons in 
high-symmetry reference structures and this has been a suc-
cessful method for characterizing known and new ferroelec-
tric materials [45]. Until relatively recently, it has been tacitly 
assumed that the polar phonon frequency vanishes as a func-
tion of temperature but of course other tuning parameters (like 
pressure) could achieve this softening as well.

It is worth comparing the relative strengths of the elec-
tric and magnetic dipole forces. In atomic units FM, the force 
between two magnetic dipoles at a distance r, is

FM =
µ0µB

4πr3 ≡ α2
F

4π

(aB

r

)3
 (22)

where aB = 0.05 nm and αF ≡ 1
137 are the Bohr magneton 

and the fine structure constant respectively; by contrast, for 
an electric dipole p = e∆aB, the dipolar interaction force is

FD =
p2

8πϵ0r3 ≡ ∆2

4π

(aB

r

)3
, (23)

where the parameter ∆ = O(1) is determined by effective 
charges and atomic displacements [49]. The ratio of the fer-
roelectric to ferromagnetic dipolar forces is then of order (
∆
α

)
2 ≡ (137)2 , indicating that long-range interactions are 

more significant in ferroelectrics than in generic magnetic 
systems. This ratio is a contributing factor towards explaining 
why the Ginzburg regime, where long-wavelength (‘infrared’) 

Figure 6. Crystal structures of the perovskite ferroelectric BaTiO3. (a) High-temperature cubic paraelectric and room-temperature 
tetragonal ferroelectric structures for (b) up and (c) down polarizations respectively (Pup and Pdown) indicating the relative displacements of 
the positively charged Ti and negatively charged O ions. From [48]. Reprinted with permission from AAAS.
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fluctuations govern the critical behavior, in ferroelectrics is 
empirically significantly smaller than its counterpart in mag-
nets in many cases [29]; classically the Ginzburg regime 
below Tc is defined by the temperature interval close to a phase 
transition where order parameter fluctuations are comparable 
or larger than the average value of the order parameter itself. 
However corrections to simple mean-field (Landau) theory 
due to anisotropic dipolar forces and anisotropic elastic inter-
actions may be important. For example, the first logarithmic 
corrections to mean-field exponents due to fluctuations at mar-
ginal dimensionality were calculated for a three-dimensional 
uniaxial ferroelectric [6, 50, 51]; these predictions were con-
firmed by experiment [52, 53] and played an important role 
in the development of the renormalization group approach to 
classical phase transitions [54, 55].

In the previous section  we related ⟨δφ2
T⟩ to χ(T) using 

(6), (9) and (16); let’s now apply these results to d = 3 fer-
roelectrics where we are considering a QCP where the gap 
in the polar optical mode vanishes with a resulting dispersion 
as ω ∝ q as measured by neutron scattering [56–58] so the 
dynamical exponent z = 1. In the proximity of a transition 
where α = 0, we have at long wavelengths (q → 0)

χ(T)−1 ≈ T
∫ qc

κ

qd−1dq
q2 (24)

where qc is the cutoff appropriate for the temperatures of inter-
est; here we are implicitly neglecting the temperature-depend-
ence of κ which, according to (19), is reasonable for T → 0 
if d + z > 4. At high temperatures (T ≫ ωq for q < qBZ), 
qc = qBZ has no temperature-dependence so we recover the 
Curie result χ−1 ∝ T ; here we have assumed that κ has satur-
ated and thus is constant for these high temperatures. However 
when quantum effects become important (qT ≪ qBZ), 
qc = qT ∝ T1/z; applying the results (17)–(19) to d = 3 fer-
roelectrics (z = 1), we obtain

χ−1 ∝ T
d−2+z

z = T2 (25)

which we emphasize is distinct from the classical (Curie) 
behavior (χ−1 ∝ T ); since deff = d + z = 4 we also have log 
corrections that are usually difficult to observe exper imentally. 
We note that we have reproduced a result first calculated dia-
grammatically [16, 17, 59] and then rederived using other 
methods [18–20, 22, 60].

A critical reader may note that here we have neglected the 
long-range dipolar interactions discussed previously; several 
theoretical studies [16–18, 22] indicate that their main effect 
near a QCP is to produce a gap in the longitudinal fluctua-
tions, but that the transverse fluctuations remain critical. This 
conclusion is supported by recent measurements [22] of χ(T) 
near a ferroelectric QCP (FE-QCP) indicating good agree-
ment with (25). We should stress that at a QCP with d + z > 4, 
both κ and qT go to zero; however in this case, as we saw in 
(19), the ratio qT

κ  diverges as T → 0 so it is the ‘ultraviolet’ 
fluctuations that are crucial. By contrast at a classical trans-
ition, κ → 0 and the wavevector cutoff qc = min{qT , qBZ} 
remains constant, and if d < 4 the ‘infrared’ fluctuations are 
important. The key roles of very different fluctuation regimes 

at classical and at quantum critical points suggests why the 
influence of dipolar interactions is distinct in these two cases.

Anisotropic elastic effects in ferroelectris have also been 
studied [61]. The resulting domains have sufficiently slow 
dynamics, perhaps due to their physical extent or to pinning, 
that they do not seem to contribute to low-temperature ther-
modynamic quantities on measurable time-scales studied to 
date [22].

Analogous to Einstein’s approach to the specific heat prob-
lem [34], we can also consider the situation where the low-
energy excitations are dispersion-free with a single frequency 
ω0. This is just the case of a simple harmonic oscillator [27] 
so we have

χ(ω) ∝ ω0

ω2 − ω2
O

 (26)

and

χ′′(ω) ∝ δ(ω − ω0)

ω0
. (27)

Using the identity for the Bose function

n
(ω

T

)
+

1
2
=

1
2
coth

( ω

2T

)
, (28)

we input (27) into the general expression for the moment 
amplitude variance (4) to obtain

⟨δφ2⟩ ∝ 1
ω0

coth
(ω0

2T

)
. (29)

Taking the q → 0 limit of (15) we obtain

χ−1 = (α+ 3β⟨δφ2⟩) (30)

where α and β are defined in (12); both are finite since we are 
not at a phase transition. Combining (29) and (11), we then 
obtain

χ−1 =

[
α+

3Aβ
ω0

coth
(ω0

2T

)]
 (31)

which can be rewritten in the Barrett form [62, 63]

χ = C
[ω0

2
coth

(ω0

2T

)
− T0

]−1
 (32)

where C = ω2
0

6β and T0 = −αA
6β  are constants written in terms 

of the original parameters. We re-emphasize that the Barrett 
(or rather ‘Einstein-Barrett’) expression is for dispersion-free 
excitations [28]; it is thus not valid in the immediate vicinity 
of a quantum critical point where, similar to the situation in 
the Debye model [34, 44], excitations of different wavevectors 
have different frequencies.

The Grüneisen ratio, Γ = α̃
cP

 where α̃ and cp are the ther-
mal expansion and the specific heat respectively, has been 
identified as a physical quantity that diverges at a QCP and is 
constant at a classical critical point [64–66]. The Grüneisen 
ratio is then a useful bulk thermodynamic probe to locate, 
classify and categorize QCPs in a diverse set of materials, 
so let’s now use the methods we’ve developed to determine 
Γ(T) near a FE-QCP. As an aside, we note that this Grüneisen 
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ratio is to be distinguished from the Grüneisen parameter 
that measures the logarithmic change of a particular mode 
frequency as a function of volume change; the two quanti-
ties are only simply related when the lattice frequencies are 
temperature-independent which is definitely not the case 
for the (predominantly) displacive ferroelectrics (DFEs) of 
interest here.

Using Maxwell’s relations, the Grüneisen ratio can be 
written as the effect of a volume change on a solid’s total 
thermal energy, Γ = 1

V
∂V
∂U. Because d = 3 displacive quant um 

paraelectrics (z = 1) reside in their marginal dimension 
(deff = 4), their critical behavior can be described by a self-
consistent mean-field theory where fluctuation corrections due 
to anharmonicities are included via the fluctuation-dissipation 
 theorem; we’ve already implemented this approach in (15) 
where the Gaussian fluctuations are treated to leading order 
using (9). This approach is only strictly valid for deff > 4, but 
the weakly temperature-dependent logarithmic corrections to 
mean-field theory are likely to be too small to be observable 
in most experiments [22]. The free energy as a function of the 
polarization change (δφE  where here φE  is the electric dipole)

F(δφE, δV) =
α

2
δφ2

E +
a
2
δV2 − η(δV)(δφ2

E) (33)

where on symmetry grounds the form of the coupling term 
is even in δφE  but odd in δV , the change in volume from the 
equilibrium T = 0 value; α = 0 at a phase transition and a 
and η are constants.

Minimizing (33) with respect to volume and, using (9) to 
average over fluctuations to get the most probable result, we 
obtain

⟨δV⟩ ∝ ⟨δφ2
E⟩ (34)

so that

ΓFE(T) =
1
V

(
δV
δU

)
∝ ⟨δφ2

E⟩
δU

. (35)

Because neither the numerator or the denominator has a sin-
gularity in (T − Tc) for a finite transition temperature Tc, we 
expect that

ΓCFE(T → Tc) ∝ (T − Tc)
0 (36)

will be independent of temperature; this is supported by 
experiment reporting the identical temperature-dependences 

of thermal expansion and specific heat near finite-temperature 
ferroelectric phase transitions [28].

However in the approach to a T → 0+ FE-QCP, we can use 
(16) to write

lim
T→0+

⟨δφ2
E⟩ ∝ χ−1 ∝ T2. (37)

Analogous to the Debye approach to the specific heat [44], the 
change in energy is equal to the temperature multiplied by the 
number of accessible modes

δUQFE ∝ T(qd
T) (38)

so that the temperature-dependence of Γ in the vicinity of a 
(d = 3) FE-QCP is

ΓQFE =

(
δV
δU

)
∝

(
⟨δφ2

E⟩
δU

)
∝ χ−1

Tqd
T
=

T2

T4 =
1

T2 (39)

that diverges with decreasing temperature and thus is dra-
matically different from the temperature-independent classi-
cal case (36); here we are implicitly considering the strongly 
temperature-dependent part of φE .

Since Γ = α̃
cP

 where α̃ and cP are the thermal expansion 
and the specific heat respectively, its experimental determi-
nation involves two distinct measurements. Not only does 
the temper ature-dependence of Γ signify the importance of 
quantum fluctuations, but it is also an independent deter-
mination [67] of the dynamical exponent z. In table  1. we 
summarize the distinctive temperature-dependences of the 
inverse susceptibility and the Grüneisen ratio in the vicinity 

Table 1. Expected temperature-dependences of two experimental 
probes in the approach to d = 3 ferroelectric critical points we 
reproduce susceptibility results found elsewhere [16–20, 22, 59, 
60]. Here T → T+

c  and T → 0+ refer to classical and to quantum 
critical points respectively. In the approach to a classical critical 
point, the inverse dielectric susceptibility displays Curie (χ−1 ∝ T ) 
behavior; for T → 0+, it scales as χ−1 ∝ T2 where here we are 
neglecting weak logarithmic corrections for the relevant case 
d + z = 4. We note that χ = ϵ− 1 where ε is the dielectric 
function. The Grüneisen ratio, Γ = α

cP
 where α and cp are the 

thermal expansion and the specific heat respectively, diverges near 
a quantum critical point (Γ ∝ T−2); by contrast it remains constant 
near a classical one and thus is an important signature of quantum 
criticality [64–66].

T → T+
c    (Tc > 0) T → 0+   (Tc = 0)

Inverse dielectric 
susceptibility χ−1

T T2

Grüneisen ratio 
Γ = α

cP

T  
Constant

T−2  
Diverging

Ferroelectric necessities: key concepts

 • A ferroelectric has a spontaneous polarization that is 
switchable by an electric field.

 • Inversion symmetry is broken in the ferroelectric 
phase.

 • The temperature-dependence of observable quantities 
(e.g. susceptbility) in the vicinity of both classical 
and quantum critical points can be determined using 
a self-consistent mean-field theory where fluctuation 
corrections due to anharmonicities are given by the 
fluctuation-dissipation theorem.

 • The Barrett form of χ(T) results if a single Einstein 
frequency is assumed; this is not valid in the vicinity 
of a QCP where the wavevector-dependence of the 
excitation spectrum (dispersion) is important.

 • The Grüneisen ratio diverges with decreasing temper-
ature near a quantum ferroelectric critical point but 
remains constant near its classical counterpart.
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of three-dimensional classical and quantum displacive ferro-
electric critical points.

More generally paraelectrics near displacive ferroelectric 
quantum critical points offer appealing examples of quant um 
critical behavior often without the complications of dis-
sipation and damping that occur in metallic magnetic sys-
tems. Furthermore because their dispersion is linear (z = 1), 
quant um critical paraelectrics can be studied just below, at or 
just above their upper critical dimension (dupper = 3 + 1 = 4) 
making detailed comparison between theory and experiment 
possible in ways that are not so straightforward for their 
metallic magnetic counterparts (e.g. z = 3 for a metallic fer-
romagnet) [12, 18, 22]. It is thus perhaps not so surprising that 
some of the earliest theoretical studies of quantum criticality 
were done in a paraelectric setting [16, 17].

A key similarity between displacive ferroelectrics (DFEs) 
and metallic magnetic systems is that in both material classes 
amplitude fluctuations of the appropriate moments on length-
scales of order their unit cells are significant so that it is rela-
tively straightforward to suppress their orderings to T → 0. 
By contrast, in insulating magnets and order–disorder ferro-
electrics the moment fluctuations are mainly orientational on 
length-scales of order their unit cells in the high-temperature 
phase; it is therefore challenging to prevent ordering at low 
temperatures for the study of quantum criticality, though there 
are indeed some magnetic examples [15, 68–71]. As an aside, 
we should note that in the literature the descriptives metal-
lic and itinerant are often used interchangeably; here we will 
use both terms to mean that the volume of the Fermi sur-
face encloses the magnetic carriers. Of course the dynamics 
in displacive ferroelectrics (propagating vibrational modes) 
are distinct from those in itinerant magnets (spin precession 

and dissipative spin dynamics) and this will result in differ-
ent quantum critical behavior. The issue of universality near 
quantum phase transitions is still one of open discussion, and 
a new class of materials for detailed study could shed light on 
this central issue [72]. With this goal in mind, in table 2. we 
summarize key similarities and differences between displacive 
ferroelectrics and itinerant ferromagnets, focussing on charac-
teristics most relevant for the study of quantum criticality.

4. The case of SrTiO3 to date

So far we’ve discussed quantum criticality in displacive fer-
roelectrics in rather broad, abstract terms...let’s now turn to 
what all this means specifically for the case of SrTiO3 (STO), 
a material that has been an important setting for basic research 
and for specific applications over the course of several 
decades [28, 73]. Here we will focus mainly on summariz-
ing its low-temperature properties, where more detail can be 
found in reviews (and references therein) elsewhere [8, 9, 28, 
73, 74]. As we have already discussed, ferroelectricity in the 
ABO3 perovskites is driven predominantly by soft long-wave-
length transverse optical (TO) phonons; thus this displacive 
ferroelectric (DFE) phase transition is naturally sensitive to 
pressure-tuning and hence to studies of quantum criticality. 
BaTiO3 (BTO) was the first perovskite ferroelectric to be 
identified, and the development of FE from its simple high-
temperature cubic perovskite structure was very appealing and 
led to intense study [28]. At high temperatures, the di electric 
response of SrTiO3, an isovalent cousin of BTO, is Curie–
Weiss and suggests a ferroelectric temperature of Tc ∼ 40 K. 
Like BTO, STO has a soft TO mode such that ϵ−1 ∝ ω2 over a 
broad temperature region [43]. However at Tc = 105 K, STO 
has a cubic-tetragonal (C-T) transition where both phases are 
paraelectric in contrast to the C-T transition in BTO where FE 
develops. In STO there are clear thermodynamic anomalies at 
Tc but no inversion symmetry-breaking, though at low temper-
atures boundaries between tetragonal domains are polar  
[75, 76]. Phonon softening at the Brillouin zone boundary is 
observed at Tc and this antiferrodistortive (AFD) transition in 
STO is associated with the development of staggered rotations 
of oxygen octahedra in adjacent unit cells. Though STO polar 
soft modes are present, ferroelectricity is not observed to the 
lowest temperatures measured at ambient pressure [22].

The unexpected low-temperature behavior in the dielectric 
response of STO (it is large but finite as shown in figure 7) led 
to STO being named the first ‘quantum paraelectric’ [79]. It 
was assumed that the stability of the paraelectric state in low 
temperature STO is due to effects of zero-point fluctuations 
analogous to the situation in liquid helium where crystalliza-
tion is never achieved at ambient pressure. There was already 
prior theoretical literature on the effects of quantum fluctua-
tions on low temperature displacive transitions [16, 17, 59, 
60, 62], and experiments on STO stimulated more theoretical 
research in this direction [9, 18–20, 22, 80–82]. Usually one 
associates zero-point fluctuations with light atoms like hydro-
gen or helium so their significance for STO may seem surpris-
ing. However quantum effects can also assume importance 
when there are two or more low-temperature phases present, 

Table 2. Key similarities/differences between displacive 
ferroelectrics and metallic ferromagnets most relevant for the study 
of quantum criticality.

Displacive  
ferroelectrics

Metallic  
ferromagnets

Dipole  
origin

Charge separation Bohr magnetron of 
electron
(and possible orbital 
motion)

Classical Quantum
Non-relativistic Relativistic
No intrinsic angular 
momentum

Intrinsic spin angular 
momentum

T > Tc Dipole moments Ill-defined due to amplitude 
moment fluctuations
Moment fluctuation energy scale > Tc

Dynamics Propagating Precessional and 
dissipative

Atomic vibrations Spin fluctuations
(Second-order in time) (First-order in time)

Dynamical 
exponent z

1 3

(ω ∝ qz) (Assuming Landau 
damping)

dupper
space = 4 − z 3 1

Rep. Prog. Phys. 80 (2017) 112502



Key Issues Review

13

for example paraelectricity and ferroelectricity, with negligi-
ble energy differences [28]. In the case of STO, the coupling 
between the oxygen rotations and the soft polar mode is very 
small so that quantum fluctuations can affect the AFD and the 
FE effectively independently [78]; computationally quantum 
fluctuations have been shown to suppress the FE transition 
[81], supporting the proposal that STO is a quantum paraelec-
tric. It was noted early on that the Einstein-Barrett expression 
(32) [62] for the dielectric susceptibility does not work well 
for STO [79], most likely because STO has a phonon disper-
sion [28]. Indeed it is exactly why STO is of interest to us at 
low temperatures since we expect scale-free quantum fluctua-
tions there to be quite important.

The antiferrodistortive transition in STO at Tc = 105 K at 
ambient pressure is very close to a tricritical point and indeed 
STO is a marginal system very close to the stability edge of its 
paraelectric phase. External perturbations including uniaxial 
stress, epitaxial strain and chemical subsitution induce fer-
roelectricity at finite temperatures. More recently it has been 
found [9, 83–85] that ferroelectricity can also be induced 
in STO with isotope subsitution (Oxygen-18) such that for 
(SrTi16O18

1−xOx)3 the ferroelectric transition temperature 
scales as TFE ∝ (x − xc)0.5 for x ! xc ≈ 0.3 where TFE = 23 
K for x = 1. In the simplest models isotope subsitution sof-
tens the polar phonons, and there are several such theoretical 
discussions specific to STO [9, 86–88]; here the key assump-
tion is that the mass increases at constant stiffness. However 
we might also expect that a decrease in frequency increases 
the susceptibility and thus decreases the stiffness, leading to 

an increase in fluctuation amplitude. The relative importance 
of mass versus stiffness change in describing isotopic substi-
tution in STO is a topic of current discussion.

On the experimental side, application of hydrostatic pres-
sure to STO-18 (x = 1) suppresses its ferroelectric transition 
to zero-temperature [89], so that the effects of quantum fluc-
tuations can be studied precisely at the QCP. More recently 
the dielectric response of (SrTi18O16

x O1−x)3 has been studied 
for varying x at very low temperatures at ambient pressure; 
because it does not depend strongly on sample growth condi-
tions or purity, it has been suggested that disorder is not a key 
feature [22]. The detailed behavior of the dielectric response 
is in excellent agreement with theoretical predictions [9, 17–
20, 22, 59, 60, 77, 82], suggesting that this is a system where 
detailed interaction between theory and experiment are possi-
ble. Work is currently in progress on the Grüneisen ratio [66] 
in this same set of materials to explore its behavior at and in 
proximity to the DFE-QCP (displacive ferroelectric quantum 
critical point) [67]. We note it is necessary to take account 
of the coupling of the electronic polarization field with the 
acoustic phonons to obtain a full description of the dielectric 
behavior particularly at the very lowest temperatures, below a 
few Kelvin [19, 22, 77, 78].

For the sake of completeness, we should add that although 
the transverse optic soft mode in SrTiO3 reaches zero fre-
quency only in STO-18 causing ferroelectricity below roughly 
30 K, there is a different and rather unexpected kind of short-
range ferroelectric distortion in all isotopic variations of STO: 
below roughly 80 K, the Sr-ions displace along [1 1 1] direc-
tions, yielding a triclinic structures with local polarizations 
[75, 76]. Under normal conditions, these local polarization 
cannot all be aligned to yield a macroscopic polarization, so in 
some important way cryogenic STO with 18O does not behave 
as a conventional paraelectric. The ferroelectric nanodomains 
are nestled inside larger ferroelastic domains (‘walls within 
walls’) [75]. This local symmetry may play a role in the crys-
tallographic structure of ferroelectric STO with 18O, and this 
remains an open question. Again we note that the response 
time of these domains appears to be very slow [61] as they 
don’t appear to contribute to observed low temperature ther-
modynamic quantities studied so far [22].

In a nutshell, STO and its isotope variants, provide a nice 
setting to study quantum criticality since the dynamics are 
simple (propagating) and it resides at its upper critical spatial 
dimension dupper

space = 4 − 1 = 3 so that results from both scaling 
and self-consistent phonon theories apply (up to logarithmic 
corrections) and can be compared in detail with experiment. In 
figure 8 we display a schematic Temperature-Pressure phase 
diagram indicating the observed behavior of SrTiO3 and related 
perovskite materials at ambient pressure. Of course there are a 
number of other exciting recent developments associated with 
STO at low temperatures that also present exciting research 
opportunities both for fundamental study and also towards 
applications, and we mention them briefly here:

 • Giant piezoelectricity. The large piezoelectric response 
of STO at low temperatures makes it very useful for a 
number of cryogenic applications [92]. To our knowl-

Figure 7. Temperature-dependance of the inverse dielectric 
function ϵ−1(T) at ambient pressure for SrTiO3 as a function of the 
square of the temperature up to approximately T = 50 K from [22] 
indicating good agreement with the behavior ϵ−1 ∝ T2 expected 
theoretically (ϵ = 1 + χ) in the approach to a d = 3 ferroelectric 
quantum critical point where the weak logarithmic corrections are 
not observed [16–20, 22, 59, 60]. The room-temperature cubic 
perovskite crystal structure of SrTiO3 is shown in the top left corner. 
The lower inset is an expanded view of the low-temperature data 
[22], indicating an upturn below 4 K most likely due to coupling of 
the polarization with acoustic phonons [19, 22, 59, 77, 78].
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edge, the piezoelectricity of the isotopically mixed STO 
family has not been systematically measured and it may 
be tunable as a function of the 18O/16O ratios and epi-
taxial strain to suit specific needs.

 • Photoinduced enhanced dielectric constant. It has been 
found that a significantly enhanced dielectric constant 
can be induced in STO by ultraviolet radiation with the 
suggestion that it is related to quantum effects [93, 94], 
possibly through large polaron formation [95]

 • Chemically doped STO. There has been extensive work 
on the low temperature properties of chemically doped 
quantum paraelectrics [96], particularly on impurity-
induced ferroelectricity. The development of quantum 
relaxors and quantum paraelectric glassiness has been 
less studied and could be important [97], as we’ll discuss 
in the next section, for electrocaloric applications.

 • Electron transport in doped STO. Electron transport 
in n-doped SrTiO3, achieved either by oxygen reduction 
or by Nb subsitution, has been observed [98], with high 
carrier mobility [99, 100] and unusual resistive behavior 
[101]. The magetoresistance and the Hall resistivity 
associated with photoinduced carriers in STO is also 
unconventional [102] suggesting that the metallic state 
emerging from doped STO may need further characteri-
zation particularly due to its very low Fermi temperature.

 • Superconductivity in STO. Electron-doped STO is one 
of the most dilute superconductors known [103, 104], 
and most likely a non-BCS mechanism is necessary for 
its explanation More recently a gate-tunable insulating-
superconducting transition has been observed in an STO 
weak link [105], again pointing to anomalous behavior in 
this material. The dependence of the superconducting Tc 
on the percentage of 180 in the STO is an active topic of 
theoretical [106, 107] and experimental [108] research. 
We will return to the question of superconductivity in 
STO in the ‘open questions’ section.

These are just some of the many stimulating questions associ-
ated with STO at low temperatures. Of course this material is 
very much in the news at higher temperateratures including 
its role in oxide interfaces [109–111] and as a substrate that 
mysteriously enhances the superconductivity in FeSe [112].

In this section we have focussed on ferroelectric quantum 
criticality in STO, and we conclude it by noting that ferroelec-
tric quantum phase transitions have been observed in a vari-
ety of systems including other insulating perovskites [113], 
organic complexes [114–116] and narrow-band semiconduc-
tors [117]. In order to emphasize this point, in figure  9 we 
display four distinct examples of ferroelectric quantum trans-
itions, noting the range of Tc’s accessible with chemical sub-
stitution and applied pressure.

5. A flavor for low temperature applications

Let us now turn to some low-temperature applications of 
ferroelectrics. As we mentioned earlier, the current trends 
due to market demands are for faster and smaller devices. 
Ferroelectric films are used as passive elements in dynamical 

random access memories (DRAMs) comprised of grids of 
capacitors with access transistors; here each bit is stored in 
a distinct capacitor where 0 and 1 correspond to the absence/
presence of charge [36, 118] and the appeal of FE (and PE) 
materials is their high dielectric constants. DRAMS are among 
the highest density memories in current use with readily avail-
able 64 Gbit chips. Despite their many attractive features 
that include ultrafast speeds and low cost, DMRAMs require 
regular memory refresh cycles to ensure that the stored data 
is not lost due to everpresent leakage currents. The refresh 
interval, currently about 60 milliseconds, depends on the ratio 
of the stored charge to the leakage current. An area of cur-
rent interest is to lengthen the time between refresh cycles, 
both to increase device time for memory access and to reduce 
power consumption. If such a ‘long-refresh DRAM’ were run 
at 77 K, where the leakage currents are significantly smaller 
than at ambient temperature, the refresh frequency might drop 
orders of magnitude from kHz to Hz where details would 
depend on mat erial specifics.

Figure 8. Effective temperature versus reduced effective pressure 
phase diagram for SrTiO3, KTaO3 and related materials. Here 
the effective temperature is the ratio of the temperature and the 
material’s Debye temperature associated with its optical phonon 

branch 
(

T
TD

)
. The effective pressure can be tuned by isotopic 

(SrTi(18O16
x O1−x)3) or by chemical (Sr1−xCaxTiO3) substitution 

[90, 91], or by application of external hydrostatic pressure [89]. 
Based on an integrated theoretical-experimental approach [22], a 
selection of materials is positioned on this phase diagram (with 
units of effective pressure defined in [22]) where a critical quantum 
paraelectric is one with a gapless dispersion (ω ∝ qz) whereas the 
Einstein-Barrett description [62] may only apply to materials in 
the ‘quantum paraelectric’ phase with a gapped spectrum. Insert: 
T2

c  versus 18O percentage in SrTi(18O16
x O1−x)3 with a linear slope 

indicating an isotopically-tuned ferroelectric phase transition 
temperature with Tc ∝

√
x , a result in agreement with self-

consistent mean-field theory [22]. The room-temperature cubic 
perovskite structure of SrTiO3 is also shown in the top of the phase 
diagram. Adapted with permission from Macmillan Publishers Ltd: 
Nature Physics [22], Copyright (2014).
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Ferroelectric films are also used as active memory elements 
in FeRAMs (ferroelectric random access memories, also called 
FRAMS) where information is stored in polarization (charge) 
states [28, 36, 119]. The low cost and high speed of FeRAMs 
makes them competitive with other storage devices [36, 119] if 
they can maintain the demands of miniaturization [120]; they are 
particularly attractive for satellite applications due to their radia-
tion hardness [36]. Data storage cells in FeRAMs, as in DRAMs, 
consist of ferroelectric capacitor-based structures with access 
transistors; in FeRAMs it is the nonlinear relationship between 
applied field and polarization (charge) in ferroelectric materials 
that is exploited to store information analogous to the situation 

in magnetic core memories. For such a memory cell, the switch-
ing barrier (∆U) must be larger than the thermal energy scale, 
kBT, so that the stored information is not corrupted. Therefore 
we can equate the switching and the thermal barriers

∆U = kBT ⇒ Lc (40)

to obtain a critical length-scale Lc that sets the lower-bound on 
the characteristic system size. In a ferroelectric memory, the 
switching barrier can be estimated as the energy stored in its 
effective capacitor. Since these devices are operated at fixed 
voltage (V, the standard silicon logical level that is currently 
4.5 ± 0.5 V) with effective capacitance C, we write

Figure 9. Four phase diagrams indicating different materials where ferroelectric quantum phase transitions have been studied 
experimentally with tuning by pressure or by chemical substitution. (a) Pressure-tuned ferroelectric quantum phase transition in perovskite 
BaTiO3. The figure labels C,T,O and R refer to the cubic, tetragonal, orthorhombic and rhombohedral structural phases of BaTiO3. The 
polarization direction points in different directions in each of the three ferroelectric phases (T, O and R). All transitions are first-order at 
ambient pressure. Adapted figure with permission from [113], Copyright (1997) by the American Physical Society. (b) The IV–VI family of 
narrow-band semiconductors GeTe and PbTe have soft transverse-optical phonon modes that can lead to ferroelectric instabilities. Pressure, 
carrier concentration and chemical composition can be used to tune these materials through ferroelectric quantum transitions as shown 
in this figure reprinted from [117], Copyright with permission from Elsevier. (c) Quantum phase transition in a compositionally tuned 
organic uniaxial ferroelectric tris-sarcosine calcium chloride. Here the quantum ferroelectric transition is tuned by chemical substitution. 
Reproduced from [116]. © IOP Publishing Ltd. All rights reserved. (d) Pressure-temperature phase diagrams of the charge-transfer 
complexes DMTTF-QCl4 and DMTTF-QBr4. Inset: Close to Pc, T2

c  scales with P in the ionic antiferroelectric DMTTF-QBr4. We note that 
this scaling is similar to that of Tc(x) shown in the inset of figure 9, suggesting that external and chemical pressure have similar effects on 
Tc. From [114]. Reprinted with permission from AAAS.
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∆U =
1
2

CV2 ∝ L ( for fixed V) (41)

so that we see that the switching barrier scales with C and 
hence with its characteristic length [36]. More specifically, 
taking C = (ϵ0ϵ)(α) where α = A

d , we find that

Lc =

(
T
V2

)(
4
αϵ

)
10−13 m (42)

where T(K), V(v), α(m) and ε are inputs. A typical FRAM 
currently available uses PZT (lead zirconate titanate, 
Pb(Zr, Ti)O3, with ϵ = 1300) and operates at ambient temper-
ature (T = 300 K) with α = 10−5 m since it is 100 nm (L) 
thick with a lateral length of about 1 micron; at the current 
voltage standard (5 V) , Lc is 0.1 nm (L ≫ Lc) indicating that 
these FRAMs are thermally safe. However should V, α and/
or ε decrease in the future, T is a very useful tuning parameter 
that can be reduced to ensure that the stored charge is robust 
to thermal fluctuations. In figure 10 we show the scaling of 
the characteristic length Lc for three specific materials at room 
temperatures using current device parameters.

Reduced operating temperatures leads to decreased con-
ductivities and thus to increased breakdown fields [36]. Higher 
E fields can then be applied, resulting in increased charge and 
hence enhanced signal to noise for the sense amplifiers [36]; 
we recall that the relative polarization is the switched charge 
per unit area. Typically this is determined by applying a series 
of voltage pulses before and after the switching. The result-
ing currents are measured over time and and these integrated 
curves determine the switched charge [36, 37]. Because the 
voltage is fixed at a standard logic level, increased electric 
fields require decreasing the FE film thicknesses. However if 
we try to increase stored charge by making a FE film thinner 
at room temperature, it may short since its conductivity is too 
high to prevent breakdown. More generally, the breakdown 
threshhold depends on the product of the electric field and the 
conductivity (σ) or rather on the ratio Vσ

d  [36]. Therefore for 

fixed V, we can reduce the film thickness d if we also decrease 
σ which is achieved by lowering the ambient temperature.

Luckily ferroelectrics themselves can play a role in refrig-
eration via electrocaloric cooling (EC), the reduction of 
temper ature of a FE material in response to the removal of an 
electric field [28, 33, 36, 122–124]. Its magnetic counterpart, 
magnetocaloric cooling (MC), if often used to access millikel-
vin temperatures. Until recently EC effects were too small for 
practical applications and thus were not pursued. However 
several developments [122–125], suggest that we should 
revisit this phenomenon, particularly at low temperatures. 
More specifically the breakdown fields of FE films are sig-
nificantly larger than those of their bulk counterparts so that 
higher E fields can be applied, and multicapacitor technology 
can be used to increase their effective volumes [123]. But we 
are getting ahead of ourselves. In the spirit of being self-con-
tained, let’s remind ourselves of the key features of adiabatic 
cooling so that we can understand why to date the magnetic 
version has been more successful than its electric counterpart 
at low temperatures (and why we believe this topic deserves 
to be revisited!).

The entropy as a function of field and temperature (S(E, T)) 
plays a key role in the electrocaloric effect and its magnetic 
analogue (MC) where E is replaced by B. We can write

dS =

(
∂S
∂T

)

E
dT +

(
∂S
∂E

)

T
dE (43)

where, for an adiabatic process (dS = 0) and using the 
Maxwell relation 

(
∂S
∂E

)
T =

(
∂P
∂T

)
E (where P is the polariza-

tion), we obtain

−
(
∂T
∂E

)

S
=

(
∂P
∂T

)
E(

∂S
∂T

)
E

= T

(
∂P
∂T

)
E

cE
. (44)

Here cE is the specific heat at fixed electric field that has contrib-
utions from polar (cP

E) and nonpolar (cX
E ) modes, where the lat-

ter are predominantly acoustic phonons. The specific heat is of 
course a measure of the entropy and thus its magnitude will be 
related to the dispersion which together with the Bose func-
tion determines the distribution of low-energy excitations as 
a function of wavevector in the Brillouin zone. In a displacive 
FE, the low-frequency polar modes are localized in q-space 
and cP

E is exponentially suppressed with a gap (E ̸= 0); thus at 
low temperatures cE is dominated by cX

E  and varies as T3. These 
same acoustic phonons, in the absence of a ferroelectric phase 
transition, are the main contribution to the pyroelectric coeffi-
cient 

(
∂P
∂T

)
E ; it is expected to decrease sufficiently rapidly with 

decreasing temperature that 
(
∂T
∂E

)
S  in (44) vanishes in the limit 

T → 0 [28]. Consistent with this argument, cryogenic studies 
of KTaO3 and SrTiO3 yielded negligible EC effects [126–129] 
and this approach to low temper ature refrigeration has not been 
actively pursued for some time. So why then can magnetocalo-
ric cooling be used routinely to access very low temperatures 
in complete contrast to its electric counterpart (to date)? 

We can address this question by looking at the entropy of 
the polar modes, SP(E, T), as a function of field and temper-
ature shown schematically in figure  11(a). Here we start at 

Figure 10. The minimum device size for room-temperature 
operation without thermal corruption for three different materials 
where TGS stands for triglycine sulfate; Reproduced with 
permission from [113].
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an initial temperature Ti at E = 0 and isothermally apply a 
finite electric field; the entropy of the polar modes is then low-
ered. The electric field is then removed adiabatically, and the 
temperature TP

f  associated with the polar modes (uncoupled 
to other degrees of freedom) decreases. However since the 
total system is in equilibrium all modes, polar and nonpolar, 
must be at the same temperature. More specifically the total 
entropy (S) is a sum of the polar and the nonpolar contrib-
utions, S = SP + SX and there will be overall cooling of the 
system if and only the entropy ∆SP is substantially greater 
than ∆SX in figure 11(a): more to the point, a nonzero ∆SP 
is not good enough! In other words, the polar entropy loss 
due to the applied electric field must exceed the entropy to be 
removed from the acoustic phonons; in this case the system 
is cooled to a final temperature Tf such that TP

f < Tf < Ti  as 
shown schematically in figure 11(a). This is difficult to achieve 
in simple displacive ferroelectrics where the sound velocity of 
the polar modes is not substantially below that of the nonpolar 
ones. One way to obtain ∆SP ≫ ∆SX might be to reduce the 
sound velocity in the polar branch significantly compared to 
its nonpolar counterpart (see figure 11(b)), effectively reduc-
ing the coupling between electric dipoles to increase their 
entropy. Another approach to ∆SP ≫ ∆SX is to identify mat-
erials where the polar modes have flat dispersion bands, again 
indicating low dipole–dipole effective interactions and a high 
polar entropy. (see figure 11(c). We note that such flat disper-
sions are signature features of spin systems, specifically dilute 
paramagnetic salts and frustrated magnets, that are commonly 
used in cryogenic solid-state refrigeration [130]. Because the 

dipole–dipole interaction is typically several orders of magni-
tude larger for electric dipoles than for their magnetic counter-
parts [29], the identification of paraelectric and ferroelectric 
materials with the necessary high polar entropy at low temper-
atures is particularly challenging.

What about electrocaloric cooling at low temperatures near 
a ferroelectric quantum critical point? Interestingly enough, this 
question has already been posed near a magnetic quantum criti-
cal point [131], and work is currently in progress to study the FE 
case [132]. Ideally we want a system with a high density of min-
imally coupled electric dipoles at low T to achieve an enhanced 
polar entropy; possible candidates include order–dis order, 
relaxor materials and ferrielectric materials. Ideally we’d be 
approaching a quantum tricritical point to maximize the change 
in polarization without hysteresis; if we want the sound velocity 
of the polar modes to approach zero, then we also want to be 
at a Lifshitz point. Furthermore we’d like the system to have a 
uniaxial polarization to maximize coupling to the electric field 
(E⃗ · P⃗). Amnonia sulphate is an order–disorder ferroelectric 
with a high entropy at its FE transition, though it has not been 
practical for EC at room temperature due to its ionic conductiv-
ity [123]. This may not be an issue at low temperatures where 
ionic motion becomes frozen [123]. Indeed, analogous to their 
magnetic counterparts, dilute paraelectric salts have been used 
to cool small samples to millikelvin temperatures [133–136]; 
with current multicapacitor technology this technique could be 
greatly improved and should be revisited.

In principle low-temperature electrocaloric cooling has 
many advantages over its magnetic counterpart, particularly 

Figure 11. (a) SP(T , E) Entropy-temperature cycling for two distinct field strengths indicating the Carnot-like heat cycle that is the basis 
for electrocaloric cooling. Here Ti is the initial temperature in the adiabatic depolarization process, T0

f  is the final temperature in the absence 
of coupling to the non-polar modes and Tf is the final temperature including the effect of the non-polar modes. ∆Q is the heat that can  
be extracted from an external load. We require ∆SP to be substantially greater than ∆SX for effective cooling to occur as in case (c) in  
contrast to case (b). (b) Hypothetical dispersion where the sound velocity in the polar branch is less than that in the nonpolar branch.  
(c) Hypothetical dispersion where the polar modes have a relatively flat dispersion, indicating very low interactions between the ions  
or the dipoles and thus large polar entropy.
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its reduced size (no magnets necessary!) and its comparative 
simplicity of operation....we just have to find the right mat-
erials to make it work! Joule heating should not be a problem 
since the polar materials are reasonable insulators. For space 
applications, where dilution refrigeration is difficult to use 
par ticularly in microgravity conditions [131, 137], electroca-
loric cooling has an additional advantage as FE materials are 
robust to everpresent cosmic rays [36].

Other possible applications for low-temperature paraelec-
tric/ferroelectric materials include:

 • Satellite electronics. The radiation effects, due to cosmic 
rays and to solar activity, are not evenly distributed for 
low-Earth orbits and are even harsher in outer space. 
There is an urgent need for new electronics that are 
high-performance, radiation-tolerant and reliable [138] 
at an ambient temperature of roughly 10 K, and onboard 
infrared detectors require mK operating temperatures.

 • Phased-array radar. Ferroelectric-superconductor ‘sand-
wiches’ hold promise as phase shifters in phased-array 
radar GHz devices, running at significantly lower voltages 
than current versions. The dielectric losses must be kept 
very low to be competitive with existing bulky technolo-
gies and thus they would have to be run at low temperatures 
[36], possibly maintained by electrocaloric cooling.

 • High permittivity supercapacitors. There is an 
increasing need for high density storage of electrochem-
ical energy with rapid charge/discharge cycles and long 
lifetimes. Low dielectric loss and large-scale require-
ments could make this a niche for low-temperature PE/
FE materials that are relatively cost effective [139]

  and there are certainly many more!

6. Open questions for future research

In order to emphasize research prospects, we conclude with 
a list of open research questions in this area of materials near 
ferroelectric quantum phase transitions:

 • Specific FE materials for study at low temperatures.
  Here we have argued that the study of materials near their 

ferroelectric quantum critical points (FE-QCPs) can play 
an important role towards understanding universality at 
quantum phase transitions. However there are only a few 
systems currently known that remain paraelectric to the 
lowest temperatures, so are those the only materials in 
this class to study? There are certainly many materials 
with low (classical) ferroelectric transition temperatures 
(Tc < 100 K) [28, 36], and we expect that these Tc’s 
could be reduced with pressure, stress or with chemical 
or isotopic substitution to yield possible QCPs that, to 
our knowledge, have not yet been explored. Empirically 
it seems that ferroelectric transition temperatures are 
very sensitive to pressure, as shown in figure 9(a) with 
the case of BaTiO3. If this pressure-sensitivity of Tc is 
indeed the general case, then this would significantly 
broaden the range of materials [28, 36] where quantum 
phase transitions could be studied. Furthermore the pos-

sibility of antiferroelectric quantum criticality could be 
pursued in materials like NaNbO3 with coexisting fer-
roelectric and antiferroelectric interactions [140] whose 
low antiferroelectric Tc (∼12 K) could be reduced (e.g. by 
substitution) and where quantum fluctuations are known 
to be important at low temperatures [141]. We note that 
competing energy- and length-scales can lead to quantum 
electric-dipole liquids [142], novel textures [143–146] 
and exotic topological excitations [77, 147] in the vicinity 
of these quantum phase transitions.

 • Add spin: a multiferroic QCP.
  Additional degrees of freedom can be added in a system-

atic fashion to materials near their ferroelectric quantum 
phase transitions with rich phase behavior expected [148]. 
For example, quantum criticality in multiferroic materials 
[149] is only starting to be explored [30, 150–154] where 
the possible interaction of two quantum critical points 
could lead to novel behavior. Of course here we have 
been predominantly discussing bulk materials, but the 
low temperature behavior of multiferroic heterostructures 
[155, 156] could be intriguing as well. Multiferroics at 
low temperatures with high polar and spin entropies could 
also be candidates for advanced cryogenic solid-state 
refrigeration [157] based on both the electrocaloric and 
the magnetocaloric effects. We also note the intriguing 
case of multiferroic relaxor quantum critical points [116, 
154], that may be related to quantum glassiness.

 • Add charge: an exotic metal and unusual supercon-
ductivity

  The study of quantum criticality in magnetic metals is 
often motivated by the search for non-Fermi liquids and 
for unconventional superconductivity [14]. It is thus 
fitting that we note that the study of materials near a 
FE-QCP also fits into this ‘grand scheme’.

  Charge is another degree of freedom that can be added to 
a material near its FE-QCP by either chemical and/or gate 
doping. The Mott criterion [158] for the critical dopant 
concentration (nc) for a metal-insulator transition in 
doped semiconductors occurs when the average dopant-
dopant distance (d = n−

1
3) is a significant fraction of the 

effective Bohr radius (a∗
B = ϵ!2

m∗e2) where ε is the dielectric 
constant; more concretely the critical concentration nc 

is defined as n
1
3
c a∗B ≈ 0.26, consistent with experiment 

in many semiconductors [159]. Since the effective Bohr 
radius is proportional to the dielectric constant (ε), it is 
much larger in n-doped STO than in doped semicon-
ductors based on silicon or germanium (see figure 12); 
therefore a lower nc is expected, consistent with observa-
tion [103, 159].

  The Fermi temperature of metallic n-doped STO can be 
quite low because of the relatively high carrier effective 
mass and low densities of practical interest; for example 
for n = 5.5 × 1017 cm−3, TF ≈ 13 K [103]. At first sight 
this dilute-carrier metal looks quite conventional with 
a resistivity that scales like T2 as expected for a three-
dimensional Fermi liquid [161]. The catch is that this 
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behavior continues to temperatures well above the Fermi 
temperature TF [101, 161] where TF is determined from the 
coefficient of the linear heat capacity; in 3d for fixed m, TF 
scales with n

2
3. Arguments based on Fermi liquid, requiring 

that T ≪ TF, are clearly inapplicable for T > TF; further-
more A, the coefficient of this T2 behavior in the resistivity, 
can change by four orders of magnitude by tuning the car-
rier concentration and persists to dilute limits where known 
mechanisms for T2 behavior are no longer applicable [101].

  The traditional BCS theory of superconductivity [162] 
requires TF ≫ TD where TF and TD are the Fermi and 
the Debye temperatures, a condition not satisfied in 
n-doped STO; for n = 5.5 × 1017 cm−3, TF ≈ 13 K and 
TD ∼ 400 K so that TF ≪ TD [103]. The possibility of 
superconductivity in doped paraelectric materials was 
considered within the decade after the BCS theory was 
developed [163], and it was originally suggested that in 
polar semiconductors the temperature-scale associated 
with the longitudinal optical phonon, TL, could replace 
TD in the BCS formalism. However, because typically 
TF ≪ TL  for densities n ! 1019 cm−3, the implication 
was that superconductivity in doped paraelectrics was 
unlikely [163]. Nevertheless superconductivity was pre-
dicted [164, 165] in n-doped STO based on intervalley 
scattering; this theory led to the experimental search and 
subsequent observation of superconductivity [166] in this 
material. Ironically, despite this finding, it was later shown 
that key aspects of the motivating theory, particularly the 
assumption of multiple valleys, were inapplicable to STO 

[167]; this unusual twist in the discovery of superconduc-
tivity in doped STO only makes its existence all the more 
remarkable [106, 107, 168–171].

  In summary superconductivity occurs in n-doped STO, 
and we still have a lot to learn about its underlying 
mechanism and the symmetry of its order parameter. It 
has been observed both in bulk [91, 103, 108, 172–175] 
and, more recently, at the interface of LaAlAs/SrTiO3 
[176–178]. Like many of the heavy fermion super-
conductors, it is in the parameter regime TF ≪ TD and 
thus cannot be described by conventional BCS theory; 
however here spin-fluctuation mediated pairing cannot be 
applied. Instead it is natural to consider electron-electron 
interactions mediated by long-range Coulomb potentials. 
However here there is a conundrum: the pairing interac-
tion V(ω) scales inversely proportional to the dielectric 
constant ϵ(ω) so that at ω = 0 the interaction is small 
(since ϵ(0) is large). We recall that, within a soft mode 
picture described by (20) and (21), the dielectric constant 
can be written as

ϵ(ω)

ϵ∞
= 1 − (ω2

LO − ω2
TO)

ω2
TO

(ω2 − ω2
TO)

 (45)

  where the transverse and longitudinal frequencies, ωTO 
and ωLO, are defined by the zero and the pole of ϵ(ω). We 
see that in the frequency window

ωTO < ω < ωLO (46)

  ϵ(ω) is negative leading to an attractive interaction V(ω); 
furthermore we note that this ‘attractive frequency range’ 
is increased to its maximal value close to a FE-QCP 
where ωT → 0. Here, for simplicity, we have suppressed 
the q-dependence of V(ω) and ϵ(ω), but it is likely to be 
important due to the long-range nature of the Coulomb 
interaction. Furthermore we need to consider screening 
effects of the added carriers that become progressively 
more important with increasing n.

  So here we have a dynamical interaction between the 
electrons...what’s so difficult about this superconducting 
problem? Actually there are two challenges to address. 
The first is that a key aspect of Cooper’s crucial super-
conducting pairing argument relies on being close to 
the Fermi energy [162]; in this case the pairing problem 
becomes effectively 2d where, in contrast to 3d, binding 
is possible with an arbitrarily weak attraction. This 
reasoning is not applicable to n-doped STO where the 
pairing energy-scale is much higher than TF. Second, any 
attractive pairing of electrons must somehow ‘bypass’ 
their repulsive Coulomb interaction. In the BCS theory 
retardation is crucial [162]: the ionic screening cloud 
lags behind the electron, thereby mediating its attraction 
to other electrons. By contrast in n-doped STO, where 
there is no similar large separation of time-scales, further 
study of possible ‘Coulomb circumvention’ mech anisms 
is needed. In a nutshell in superconducting n-doped STO 
we are without two key features of the successful BCS 
theory of superconductivity...how would the theoretical 

Figure 12. A plot of the effective Bohr radius (aB) versus 
carrier density (n) indicating good comparison between the Mott 
criterion (n

1
3
c aB = 0.26) for the metal-insulator transition and 

experimental systems where aB and the critical carrier density 
(nc) for metallicity are known. Because the effective Bohr radius 
is inversely proportional to the dielectric constant, it is large for 
SrTiO3 indicating a low critical carrier concentration for the metal-
insulator transition consistent with observation [103]. This figure is 
reprinted figure with permission from [159], Copyright (1978) by 
the American Physical Society and with thanks to Behnia [160].
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description of superconductivity have developed if this 
amazing phenomenon had first been observed in n-doped 
STO rather than in mercury? 

  Finally we should note that electron-doped STO is one 
of the most dilute superconductor known to date [91, 
103]; its density of charge carriers, coming from niobium 
doping (on Ti sites), lanthanum substitution (on Sr sites) 
or from oxygen vacancies, is comparable to that of the 
metal bismuth that has only very recently been shown to 
go superconducting, albeit at a temperature much lower 
than that observed in n-doped STO [104].

  Since much study of quantum criticality is motivated by 
the search for novel forms of superconductivity, let us note 
another research possibility in this direction. Doped strained 
STO is a good candidate for a polar metal and indeed 
is currently a topic of active study in multi-component 
metallic/dielectric heterostructures where STO is known to 
host a finite polarization [179]. Though such polar metals 
were predicted theoretically some time ago [180], recently 
there has been a resurgence of interest in such materials in 
part due to their anisotropic thermal and magnetoelectric 
properties [39, 181, 182]. At low temperatures such polar 
metals will surely become polar superconductors; such 
non-centrosymmetric superconductors are expected to 
have mixed-parity pairing mechanisms with topological 
aspects to their superconducting states [183].

These are just some of the many research questions that 
emerge from looking at paraelectrics and ferroelectrics at low 
temperatures; proximity to quantum phase transitions can be 
tuned by either pressure, stress, chemical or isotope substitu-
tion and perhaps even more. This is a rich area with plenty to 
explore, and we look forward to progress in these and many 
related topics.
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