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Quantum annealed criticality: A scaling description
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Experimentally there exist many materials with first-order phase transitions at finite temperature that display
quantum criticality. Classically, a strain-energy density coupling is known to drive first-order transitions in
compressible systems, and here we generalize this Larkin et al. [Zh. Eksp. Teor. Fiz. 56, 1664 (1969) [Sov.
Phys. JETP 29, 891 (1969)]] mechanism to the quantum case. We show that if the T = 0 system lies above its
upper critical dimension, the line of first-order transitions ends in a “quantum annealed critical point” where
zero-point fluctuations restore the underlying criticality of the order parameter. The generalized Larkin-Pikin
phase diagram is presented and experimental consequences are discussed.
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I. INTRODUCTION

The interplay of first-order phase transitions with quantum
fluctuations is an active area [1–8] in the study of exotic quan-
tum states near zero-temperature phase transitions [9–15].
In many metallic quantum ferromagnets, coupling of the lo-
cal magnetization to the low-energy particle-hole excitations
transforms a high-temperature continuous phase transition
into a low-temperature discontinuous one, and the resulting
classical tricritical points have been observed in many systems
[1–8]. Experimentally, there also exist insulating materials
that have classical first-order transitions that display quantum
criticality [16–20], and here we provide a theoretical basis for
this behavior. In a nutshell, we study a system with strain-
energy density coupling [21] that has a line of first-order
transitions at finite temperatures. We show that as the temper-
ature is lowered, quantum fluctuations reduce the amplitudes
of their thermal counterparts, weakening the first-order transi-
tion and “annealing” the system’s elastic response, ultimately
resulting in a T = 0 “quantum annealed” critical point. The
generalized temperature (T ) tuning parameter (g) field (h)
phase diagram emerging from our study is presented in Fig. 1
where the field (h) is conjugate to the order parameter.

At a first-order transition the quartic mode-mode coupling
of the effective action becomes negative. One mechanism
for this phenomenon, studied by Larkin and Pikin [21] (LP),
involves the interaction of strain with the fluctuating energy
density of a critical order parameter. LP found that a diverging
specific heat in the “clamped” (fixed volume) system leads to a
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first-order transition in the unclamped system at constant pres-
sure. The Larkin-Pikin criterion [21] for a first-order phase
transition is

κ
<˜ �CV

Tc

(
dTc

d ln V

)2

, (1)

where V is the volume, �CV is the singular part of the
specific-heat capacity in the clamped critical system, Tc is the
transition temperature, and dTc

d lnV is its volume strain derivative.
The effective bulk modulus κ is defined by κ−1 = K−1 −
(K + 4

3μ)−1 where K and μ are the bare bulk and the shear
moduli in the absence of coupling between the order parame-

ter and strain; more physically, κ ∼ K c2
L

c2
T

where cL and cT are
the longitudinal and the transverse sound velocities [22]. An
experimental setting for this behavior is provided by BaTiO3

with a classical ferroelectric phase transition that is contin-
uous when clamped and, due to electromechanical coupling,
becomes first order when unclamped [23,24].

Low-temperature measurements on ferroelectric insulators
provide a key motivation for our study [16–20]. At finite
temperatures and ambient pressure these materials often dis-
play first-order transitions due to strong electromechanical
coupling [24]; yet in many cases [16–20] their dielec-
tric susceptibilities suggest the presence of pressure-induced
quantum criticality associated with zero-temperature continu-
ous transitions [16–20]. It is thus natural to explore whether
a generalization of the Larkin-Pikin mechanism [21] with
strain-energy density coupling can be developed to describe
this phenomenon.

Here we generalize the Larkin-Pikin approach to include
quantum zero-point fluctuations of the energy density, show-
ing that it is the divergence of the energy fluctuations, both
quantum and classical, that govern the LP mechanism. Quan-
tum fluctuations introduce an additional time dimension into
the partition function, which now sums over all space-time
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FIG. 1. Temperature (T ) field (h) tuning parameter (g) phase
diagram with a sheet of first-order transitions bounded by critical
end points (CEP) terminating at a zero-temperature quantum critical
point (QCP); here g tunes the quantum fluctuations and h is the field
conjugate to the order parameter. Inset: temperature-tuning param-
eter “slice” indicating a line of classical phase transitions ending
in a “quantum annealed critical point” where the underlying order-
parameter criticality is restored by zero-point fluctuations.

configurations [25,26]. At a finite temperature T , the tem-
poral extent of the quantum fluctuations is bounded by the
Planck time τP = h̄

kBT with a corresponding quantum cor-
relation length ξQ ∼ (τP )1/z where z is the the dynamical
exponent. Therefore, for temperatures where ξQ is greater than
the lattice spacing, the thermal correlation volume contains
a quantum mechanical core on length scales and timescales
determined by ξQ and τP. Due to their additional time dimen-
sion, quantum fluctuations are typically less singular than are
their classical counterparts. As the temperature is lowered,
the correlation volume of the zero-point fluctuations grows,
reducing the amplitudes of the singular thermal fluctuations
in the clamped system. The induced Larkin-Pikin first-order
transition thus becomes progressively weaker with decreas-
ing temperature, leading to a continuous “quantum annealed”
transition at T = 0.

More specifically, Larkin and Pikin considered the cou-
pling [21]

LI = λell (�x)ψ2(�x) (2)

between the volumetric strain field ell and the squared ampli-
tude ψ2 of the critical order parameter. In a critical system,
the singular fluctuations of the energy density are directly
proportional to ψ2; thus, (2) corresponds to a strain-energy
coupling. Naively, (2) is expected to induce a short-range
attractive order-parameter interaction. LP showed that (2) also
leads to an anomalous long-range interaction between order-
parameter fluctuations

S −→ S − λ2

2T κ

[
1

V

∫
d3x

∫
d3x′ψ2(�x)ψ2(�x′)

]
(3)

with

1

κ
=

(
1

K
− 1

K + 4
3μ

)
, (4)

where μ is the shear modulus. This long-range interaction is
finite if μ > 0, i.e., if the medium is a solid. LP showed that
this induced long-range interaction in (3) generates positive
feedback to the tuning parameter, leading to a multivalued
free-energy surface and a resulting first-order phase transition.

Here we expand the LP approach to include both quantum
and classical fluctuations, summing over all possible space-
time configurations in the action, to obtain a generalized LP
criterion

κ
<˜

(
dgc

d ln V

)2

χψ2 , (5)

where

χψ2 =
∫ β

0
dτ

∫
d3x〈δψ2(�x)δψ2(0)〉 (6)

is the space-time average of the quantum and thermal “en-
ergy” fluctuations, β = 1

kBT , and g is the tuning parameter for
the phase transition, with the convention that gc(T = 0) =
0. At zero temperature, this expression extends the original
LP criterion (1) to quantum phase transitions. At finite tem-
peratures, the critical temperature and the critical coupling
constant are related by gc(Tc) = uT 1/�̃

c , where �̃ = ν̃z is
the shift exponent governing the finite-temperature transition
with ν̃ and z the quantum correlation length and the dynam-
ical critical exponents, respectively [27]; therefore, d ln gc =
1
�̃

d ln Tc and the LP criterion becomes

κ
<˜

(
dTc

d ln V

)2

�CV /Tc︷ ︸︸ ︷( g

2Tc

)2
χψ2 , (7)

where we have identified �Cv/Tc = (g/2Tc)2χψ2 with the
specific-heat capacity. In this way, we see that the generalized
Larkin-Pikin equation encompasses the original criterion (1)
in addition to being applicable at low temperatures.

Recently, an adaptation of the Larkin-Pikin approach was
proposed for pressure- (P-) tuned quantum magnets where
it is often found that dTc

dP → ∞ as Tc → 0. For a pressure-

tuned transition P − Pc = uT 1/�̃
c , so that dTc/dP ∝ T 1−1/�̃

c
diverges as Tc → 0 if �̃ < 1. It was then argued that the
associated quantum phase transitions be first order [28–30].
However, such a diverging coupling of the critical order-
parameter fluctuations and the lattice should lead to structural
instabilities near the quantum phase transition that have not
been observed [8,31]. Using Maxwell relations, we can write
dTc
dP = �V

�S |
T =Tc

. Since �S → 0 as Tc → 0, proponents of the
previous argument assume that �V is finite in the same limit,
indicating latent work at the quantum phase transition. How-
ever, the ratio �V

�S can still diverge at a continuous quantum
transition if the numerator and the denominator have differ-
ent temperature dependencies as Tc → 0+. In fact, from our
generalization of the Larkin-Pikin approach, we show that

�V ∝ −T η, �S ∝ −T η(T
1
�̃

−1), (8)
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where η = α−α̃

α�̃
with α and α̃ the classical and quantum

critical exponents, respectively, governing the divergence of
energy fluctuations. Generically, α > α̃ since thermal fluctu-
ations are more singular than quantum fluctuations, so that
η > 0. This means that

lim
Tc→0+

�V → 0, (9)

so there is no latent work at the quantum phase transition,
confirming its continuous nature, despite the fact that when
�̃ < 1,

dTc

dP
= �V

�S

∣∣∣∣
T =Tc

∝ −T
1− 1

�̃
c (10)

diverges as Tc goes to zero.
The structure of the paper is as follows. In Sec. II we

present the original Larkin-Pikin approach [21], first con-
structing the classical LP action. Next, following LP, we
parametrize the positive feedback contribution to the internal
tuning parameter of the elastically coupled free energy using
the uncoupled (clamped) free energy and scaling functions
associated with classical criticality. The nonmonotonic rela-
tion between the internal tuning parameter and the physical
temperature is coincident with a multivalued (unclamped) free
energy, indicating the presence of a first-order transition in
the elastically coupled system. We also derive the classical
Larkin-Pikin criterion (1) as a macroscopic instability of the
original (uncoupled) critical point with respect to the strain-
energy density coupling [32]. This approach can be rewritten
in terms of correlation functions, giving insight into the
Tc → 0 result.

The generalized Larkin-Pikin action is derived in Sec. III,
where all possible space-time configurations are summed over
so that quantum and thermal fluctuations are included. In
Sec. IV a crossover scaling form for the clamped free en-
ergy that is applicable for both the classical and quantum
critical points [27] is presented and used in the generalized
Larkin-Pikin equations to study the system’s behavior in the
approach to Tc → 0 along the clamped system’s critical line.
The Clausius-Clapeyron relations as Tc → 0 are studied for
the unclamped system, and it is shown that there is no latent
work at Tc → 0, confirming that the quantum transition is
continuous. Next, a field conjugate to the order parameter
is applied in Sec. V, and the critical end points are deter-
mined. Field behavior in the approach to the quantum critical
point is also studied, and these results are summarized in the
Larkin-Pikin phase diagram. Experimental consequences are
presented in Sec. VI and we end (Sec. VII) with a summariz-
ing discussion and open questions for future work. Derivations
of the classical and quantum Larkin-Pikin actions and of
various crossover scaling expressions are presented in five
Appendices for interested readers.

II. CLASSICAL LARKIN-PIKIN APPROACH

The Larkin-Pikin (LP) mechanism [21] refers to a com-
pressible system where the order parameter ψ2(�x) is coupled
to the volumetric strain in the simplest case of a scalar ψ and
isotropic elasticity. The action S [ψ, u] for this compressible

system then divides up into three contributions

S [ψ, u] = SL[ψ] + SE [u] + SI [ψ, e]

= 1

T

∫
d3x(LL[ψ] + LE [u] + LI [ψ, e]). (11)

Here, in order to present the original classical LP problem in a
way that is amenable to its quantum generalization considered
later, we have used the notation L, denoting the Lagrangian
density which is also the Hamiltonian density in the classical
case.

The Lagrangian density LL[ψ] describes the physics of the
order parameter in the clamped system that, in the simplest
case, is a ψ4 field theory

LL[ψ] = 1

2
(∂μψ )2 + a

2
ψ2 + b

4!
ψ4, (12)

where a = c(T − Tc) is the tuning parameter, and b > 0; the
clamped system thus undergoes a continuous phase transition.
The term

LE [u] = 1

2

[(
K − 2

3
μ

)
e2

ll + 2μe2
ab

]
− σabeab (13)

describes the elastic degrees of freedom, where σab is the ex-
ternal stress, eab(�x) = 1

2 ( ∂ua
∂xb

+ ∂ub
∂xa

) is the strain tensor, ua(�x)
is the local atomic displacement, and ell (�x) = Tr[e(�x)] is the
volumetric strain. Finally,

LI [ψ, e] = λellψ
2 (14)

describes the interaction between the volumetric strain ell and
the squared amplitude ψ2, the “energy density,” of the order
parameter, where λ is a coupling constant associated with the
strain dependence of Tc. If we combine

LL + LI = 1

2
(∂μψ )2 + c

2
(T − Tc[ell ])ψ

2 + b

4!
ψ4, (15)

where

Tc[ell ] = Tc − (2λ/c)ell (16)

is the strain dependent Tc, so that (2λ/c) = −( dTc
d lnV ). For

notational simplicity and convenience, we shall set c = 1 in
the following development.

The key idea of the Larkin-Pikin approach is that we in-
tegrate out the Gaussian strain degrees of freedom from the
action so that the partition function takes the form

Z =
∫

D[ψ]
∫

D[u] e−S [ψ,u] −→ Z =
∫

D[ψ]e−S[ψ],

(17)
where the effective action S is a function of the order
parameter ψ .

Although the elastic degrees of freedom are Gaussian,
and can be exactly integrated out, this procedure must be
done with some care because of the special role of boundary
normal modes. In a solid of volume L3, the normal modes
can be separated into two components according to their
wavelength λ: sound waves have wavelength λ 
 L whereas
boundary waves have wavelength comparable with the size of
the system λ ∼ L. The Larkin-Pikin effect is a kind of “elas-
tic anomaly,” whereby the integration over boundary modes
generates a nonlocal interaction between the order parameter
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in the bulk action. This elastic anomaly destroys the locality
of the original theory, yet, paradoxically, as a bulk term in the
action it is independent of the detailed boundary conditions.

Larkin and Pikin chose periodic boundary conditions as
the most convenient way to integrate out the boundary modes
[21]. In a system with periodic boundary conditions, the strain
field separates into a uniform (�q = 0) “boundary term” and a
finite-momentum (�q �= 0) contribution determined by fluctu-
ating atomic displacements

eab(�x) = eab + 1

V

∑
�q �=0

i

2
[qaub(�q) + qbua(�q)]ei �q·�x, (18)

where ua(�q) is the Fourier transform of ua(�x) with discrete
momenta �q = 2π

L (l, m, n), with {l, m, n} integers, {a, b} ∈
{1, 2, 3} and volume V = L3. Physically, we can understand
this separation in (18) by noting that the strain only couples
to the longitudinal modes; however, at q = 0 there is no dis-
tinction between transverse and longitudinal modes so this
case must be treated separately from the finite-q situation.
Formally, the solid forms a 3-torus, and the integral of the
strain eab around the torus defines the number of line defects
enclosed by the torus, a kind of flux, that is∮

eab(�x)dxb = eab

∮
dxb = ba, (19)

where bb is the Burgers vector of the enclosed defects. Thus,
on a torus, the boundary modes of the strain have a topological
character.

In order to integrate out the Gaussian strain degrees of
freedom from (11) to derive an effective action for the order-
parameter field in (17), we write the effective action

S[ψ] = SL[ψ] + �S[ψ], (20)

where SL[ψ] = 1
T

∫
d3x LL[ψ] from (12) and

e−�S[ψ] =
∫

D[e, u]e−(SE [u]+SI [ψ,e]). (21)

If we write the elastic action in a schematic, discretized form

SE [u] + SI [ψ, e] = 1

2

∑
i, j

uiMi ju j + λ
∑

j

u jψ
2
j , (22)

then the effective action becomes simply

�S[ψ] = 1

2
ln det[M] − λ2

2

∑
i, j

ψ2
i M−1

i, j ψ2
j , (23)

where the second term is recognizable as an induced attractive
interaction between the order-parameter fields. Because of
subtleties associated with the separation (18) of the strain into
uniform and finite-�q components, integration of the elastic
degrees of freedom in (21) leads to an overall attractive in-
teraction (∝−ψ2

i M−1
i j ψ2

j ) with both short- and infinite-range
components.

Integrating over the elastic degrees of freedom (18) in (21) we obtain the Larkin-Pikin action

S[ψ] = SL[ψ, t, b∗] − λ2

2T

(
1

K
− 1

K + 4
3μ

)[
1

V

∫
d3x

∫
d3x′ψ2(�x) ψ2(�x′)

]
, (24)

where

SL(ψ ) = 1

T

∫
d3x

[
1

2
(∂μψ )2 + t

2
ψ2 + b∗

4!
ψ4

]
(25)

with a renormalized local interaction

b∗ = b − 12λ2

K + 4
3μ

, (26)

where we have made the replacement a → t where t = (T − Tc) and c = a
T −Tc

= 1.

The essence of the Larkin-Pikin effect is the appearance of
a distance-independent interaction between the energy den-
sities of the order-parameter field that appears in (24): it is
this term that drives a nonperturbative first-order transition
at arbitrarily small λ. Since the Larkin-Pikin argument is
valid for arbitrarily small coupling λ, the perturbative O(λ2)
renormalization of the short-range interaction in (26) becomes
negligibly small in this limit and can be safely neglected. The
prefactor of the long-range attractive interaction (24)

1

κ
=

(
1

K
− 1

K + 4
3μ

)
(27)

has two competing terms. The first is attractive (∝ 1
K ), result-

ing simply from integrating out the q = 0 part of the strain

(18), governed by the bulk modulus K . The second results
from the finite-q components of the strain (18), but in a rather
subtle fashion. The finite-q elastic fluctuations, arising from
longitudinal sound modes, are governed by the elastic mod-
ulus K + 4

3μ and lead to the perturbative renormalization of
b in (26). However, the finite-q modes explicitly exclude a
contribution from q = 0. This “bosonic hole” in the longitu-
dinal interactions gives rise to a residual long-range repulsion,
resulting in the second term (∝− 1

K+ 4
3 μ

). Remarkably, the

overall prefactor of the long-range interaction term ( 1
κ

) is only
nonzero for finite shear modulus (μ �= 0), indicating that the
Larkin-Pikin effect only occurs for solids and is absent for
liquids. We also note that for the clamped system only the
second contribution to (27) remains, leading to a repulsive
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interaction; this is consistent with the continuous transition
of the clamped system.

The distance-independent interaction in (24) can be written
in terms of the volume average of the energy density

�2 ≡
[

1

V

∫
d3x ψ2(�x)

]
(28)

so that

S[ψ] = SL − λ2V

2T κ
(�2)2. (29)

Since �2 is an intensive variable, its fluctuations about its
thermal average 〈�2〉,

δ�2 = �2 − 〈�2〉, (30)

become vanishingly small in the thermodynamic limit,
〈(δ�2)〉 ∼ O( 1

V ). Thus,

(�2)2 = (〈�2〉 + δ�2))2 = 2�2〈�2〉 − 〈�2〉2 + O(1/V 2),
(31)

so that we can reexpress (24) as a set of self-consistent equa-
tions

S[ψ] = 1

T

∫
d3x

[
LL(ψ, t ) − λ2

κ
〈�2〉 ψ2(�x)

]
+ λ2V

2κ
〈�2〉2,

〈�2〉 =
∫

dψ �2e−SL[ψ]∫
dψ e−SL[ψ]

. (32)

Equations (32) may be succinctly formulated by introducing
an auxiliary “strain” variable

φ = −λ〈�2〉
κ

. (33)

Then, we may write

e− F̃ (φ)
T =

∫
Dψ e−S[ψ,φ], (34)

where

S[ψ, φ] = 1

T

∫
d3x

[
LA(ψ, t ) + λφψ2 + κ

2
φ2

]
(35)

that can be reexpressed as

S[ψ, φ] = 1

T

∫
d3x[LL(ψ, t + 2λφ)] + κV

2T
φ2, (36)

where we see that the auxiliary variable φ shifts the “mass”
(e.g., tuning parameter) of the order parameter by a → x =
a + 2λφ. Self-consistency is then imposed as stationarity of
the free energy with respect to φ:

∂F̃ [φ]

∂φ
= 0 �⇒ [λ〈�2〉 + κφ]V = 0. (37)

In the original Larkin-Pikin derivation [21], the action (35)
was obtained by performing a Hubbard-Stratonovich transfor-
mation of the long-range interaction (29),

−λ2V

2T
(�2)2 → κV

2T
φ2 + λ(�2)φ, (38)

followed by a saddle-point evaluation of the integral over φ.
Larkin and Pikin observed that main effect of the elasticity in

the unclamped system is to make a parametrized shift of the
physical reduced temperature t to a parametrized variable X :

t → X = t + λφ. (39)

Although the phase transition of the unclamped system is
continuous for parametrized parameter X , Larkin and Pikin
[21] observed (see Sec. II A) that the original (physical) tun-
ing parameter t[X ] becomes a nonmonotonic function of X ,
leading to a first-order phase transition at finite temperatures.

Subsequent authors pursued alternative approaches to the
Larkin-Pikin criterion [32–34]. If, rather than integrating
out the elasticity variable φ, one integrates out the order-
parameter fluctuations, this results in a reduction �κ in the
bulk modulus that is proportional to energy density fluctua-
tions [32]. When the specific heat diverges, the bulk modulus
is negative, there is a macroscopic instability, and the system
undergoes a first-order transition. In the next two sections, we
summarize each of these approaches to the classical Larkin-
Pikin problem.

A. Review of the original Larkin-Pikin argument

The free energy of the clamped system is defined as

e−F (t )
T =

∫
D[ψ] e−SL[ψ,t], (40)

where SL is defined in (11) and we have explicitly included
its dependence on the tuning parameter t . In writing (40), we
have glossed over issues of renormalization. In particular, self-
energy corrections to the order-parameter propagators will
shift the critical value of Tc in t = T − Tc from its bare value
Tc to a renormalized transition temperature T ∗

c . All of these
renormalization effects can be absorbed into redefinitions of
the appropriate variables, in particular, from now on we will
redefine t = T − T ∗

c and for convenience we will drop the as-
terisk so that Tc refers to the renormalized critical temperature.

From (34) and (35) we can write the free energy for our
unclamped system as

F̃[φ, t] = F[X ] + κV

2
φ2, (41)

where

X = t + 2λφ (42)

indicates the shifting the of the tuning parameter due to the
presence of energy fluctuations.

Now,

1

V

∂F
∂X

= 〈�2〉
2

(43)

so that

φ = −λ〈�2〉
κ

= − 2λ

V κ

(
∂F
∂X

)
≡ − 2λ

V κ
F ′[X ], (44)

where we have defined F ′[X ] ≡ ( ∂F
∂X ) for simplicity. There-

fore,

F̃ = F[X ] + 2λ2

V κ
(F ′[X ])2 (45)
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FIG. 2. Schematic of the nonmonotonic relationship between the
reduced temperature (t) and the parametrized variable (X ) shifted by
energy fluctuations for the unclamped Larkin-Pikin problem.

and

X = t − 4λ2

V κ
F ′[X ]. (46)

Let us define

f̃ ≡ 2λ

V κ
F̃, f ≡ 2λ

V κ
F . (47)

Then, the two equations describing the unclamped system are

f̃ = f [X ] + λ( f ′[X ])2 (48)

and

t = X + 2λ f ′[X ] (49)

which have to be solved self-consistently, where f̃ and f
are the (renormalized) free energies of the unclamped and
clamped systems, respectively.

To examine the consequences of these equations, we recall
that that we can identify a ∝ T −Tc

Tc
≡ t with the reduced tem-

perature t . In the clamped system, we assume a second-order
transition so we can write

f ∝ −|t |2−α, (50)

where t is the reduced temperature and α > 0 is the exponent
associated with the specific heat. Since a ∝ t , this leads to

f ∝ −|X |2−α and f ′[X ] ∝ −(2 − α)|X |1−αsgn(X ) (51)

and combining these results with (49) we obtain

t = X + 2λ f ′[X ] = X − 2λ(2 − α)|X |1−αsgn(X ), (52)

where we see that there is a nonmonotonic relationship be-
tween the physical temperature (t) and the parametrized
variable (X ), as shown in Fig. 2, that leads to an inevitable
first-order transition.

In order to see more specifically how (52) translates into
a discontinuous transition, let us consider, following the ex-
ample of Larkin and Pikin [21], the specific case of α = 1

2 .

Then for t large, f ∝ |t | 3
2 . For t = 0 there are two solutions

FIG. 3. Schematic of the free energy of the unclamped compress-
ible system ( f̃ ) vs reduced temperature (t) for α = 1

2 ; the first-order
transition, due to the nonmonotonicity of t vs X , is marked here.

of (52): X = 0 and 4λ2 with f = 0 and − 16
3 λ3, respectively.

A plot of f̃ vs t is shown in Fig. 3, indicating the presence of
a first-order transition.

The Larkin-Pikin criterion (1) emerges from

t = X + 2λ f ′[X ] = X + 2
λ2

κ
〈�2〉X , (53)

where again

〈�2〉X =
∫
Dψ�2e−S(X,ψ )∫
Dψe−S(X,ψ )

(54)

is the energy density computed with the shifted reduced
temperature X . This expression describes the relationship
between the physical temperature t = (T − Tc)/Tc and the
parametrized variable X . Now, the derivative dt/dX is given
by

dt

dX
= 1 − λ2V

κ
〈(δ�2)2〉. (55)

We can identify the fluctuations in the right-hand side of this
equation with the specific-heat capacity

CV = 〈(δ�2)2〉
T 2

c

(56)

so that

dt

dX
= 1 − λ2T 2

c

κ
CV (X ). (57)

Thus, if the specific-heat capacity diverges at the classical
critical point of the clamped system CV (X ) → ∞, dt/dX will
change sign as X → 0. Then, t[X ] becomes a nonmonotonic
function of the internal temperature X that inevitably leads
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to a first-order phase transition. dt
dX = 0 in (57) is the LP

criterion (1).

B. Larkin-Pikin criterion as a macroscopic instability

An alternative approach to the Larkin-Pikin criterion is to
probe the macroscopic stability of the original critical point
with respect to the strain-energy density coupling [32]. From
(34) and (35) we know that the partition function of the
unclamped system can be written as an integral over the order-
parameter fluctuations

Z[φ] = e−F̃ [φ]/T =
∫

D[ψ] e−S[ψ,φ]. (58)

The renormalized bulk modulus

κ̃ ≡ κ − �κ (59)

at the transition is then obtained by taking the second deriva-
tive of (34),

κ̃ = 1

V

∂2F̃

∂φ2
= κ − λ2

Tc

∫
d3x〈δψ2(�x)δψ2(0)〉, (60)

where δψ2(�x) = ψ2(�x) − 〈ψ2〉. We recall the tuning param-
eter a = c(T − Tc) where we have set c = 1, so that the
singular component of the specific-heat coefficient is also
proportional to the energy fluctuations

�CV

Tc
= −∂2F

∂T 2

∣∣∣∣
Sing

= 1

4Tc

∫
d3x〈δψ2(�x)δψ2(0)〉 (61)

which allows us to relate the shift in the bulk modulus to the
singular part of the specific heat

�κ = (2λ)2 �CV

Tc
=

(
dTc

d ln V

)2
�CV

Tc
, (62)

where we have used (78) to identify 2λ = −dTc/d lnV . The
condition for a macroscopic instability, and hence a first-order
transition, is when the renormalized bulk modulus is negative

κ − �κ < 0 ⇒ κ <
�CV

Tc

(
dTc

d ln V

)2

(63)

and we see that we have recovered the Larkin-Pikin
criterion (1).

The renormalization of the bulk modulus (59) that results
can also be obtained diagrammatically (Fig. 4). In this ap-
proach the bare order-parameter interaction b now acquires
a contribution from the coupling to the strain [Fig. 4(a)]. In
the Feynman diagrams 1/κ is the bare “propagator” for the
auxiliary strain variable φ. We can use a Dyson equation for
this strain propagator [Fig. 4(b)] to determine κ̃ . Specifically,
we write(

1

κ̃

)
=

(
1

κ

)
+

(
1

κ

)
λ2〈ψ2(�q)ψ2(−�q)〉|�q=0

(
1

κ̃

)
(64)

that results in

κ̃ = κ − �κ = κ − λ2χψ2 , (65)

where χψ2 is the static susceptibility for ψ2,

χψ2 = 1

Tc

∫
d3x〈δψ2(�x)δψ2(0)〉, (66)

FIG. 4. Diagrammatic approach to the generalized Larkin-Pikin
criterion. (a) Bare interaction is a sum of a local and a nonlocal
contribution mediated by fluctuations in the strain. (b) Feynman di-
agram showing renormalization of the strain propagator by coupling
to energy fluctuations.

recovering (60). �κ is thus a self-energy correction to the
strain propagator.

This discussion enables us to obtain a heuristic understand-
ing of how the Larkin-Pikin approach can be generalized to
include quantum fluctuations of the order parameter which
now occur in both both space and (imaginary) time. The
prefactor 1/Tc in (66) is now replaced by an integral over time
so that

χψ2 −→
∫ β

0
dτ

∫
dd x〈δψ2(�x, τ )δψ2(0)〉, (67)

where we have also generalized the expression to d spa-
tial dimensions. This quantity is represented by the same
Feynman diagrams, where momentum variables now be-
come four-momenta q = (�q, νn). If we make the Gaussian
approximation 〈δψ2(�x)δψ2(0)〉 ≈ (〈δψ (�x)δψ (0)〉)2, then the
zero-temperature limit of χψ2 is

lim
T →0

χψ2 ≈
∫

dτ dd x(〈δψ (�x)δψ (0)〉)2

=
∫

dν

2π

dd q

(2π )d
(χψ (�q, ν))2, (68)

where in the second line we have Fourier transformed
into momentum space, and χψ (�q, ν) = 〈δψ (−q)δψ (q)〉, the
order-parameter susceptibility is the space-time Fourier trans-
form of the correlator 〈ψ (�x)ψ (0)〉. It follows that

lim
T →0

�κ ∝
∫

dq dν qd−1 [χψ (�q, iν)]2. (69)

To examine how this quantity behaves in the approach to the
quantum critical point of the clamped system, we can use
dimensional power counting. Since [χ ] = [ 1

q2 ] and [ν] = [qz],

lim
T →0

[�κ] = [qd+z]

[q4]
∼ ξ

4−(d+z)
Q ,

where we have replaced [q−1] = [ξQ], the quantum correlation
length. As the quantum critical point of the clamped system is
approached, ξQ → ∞, so that the quantum corrections to κ

are nonsingular for d + z > 4.
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III. GENERALIZATION OF THE LARKIN-PIKIN
APPROACH TO INCLUDE QUANTUM FLUCTUATIONS

Motivated by these heuristic arguments, we now general-
ize the Larkin-Pikin approach to include both quantum and
thermal fluctuations. In order to probe how the fluctuation-
driven first-order transition predicted by Larkin and Pikin
[21] evolves as the temperature is lowered to absolute zero,
we need to understand the crossover between the continu-
ous quantum and classical phase transitions of the clamped
system. From a scaling perspective, temperature is a relevant
perturbation that drives the system from a quantum to a clas-
sical critical point. The action of temperature on a quantum
phase transition is to introduce a boundary condition in time,
so that temperature plays the role of a finite-size correction
at a quantum critical point. In contrast to their static classical
counterparts, quantum zero-point fluctuations are intrinsically
dynamical. At a finite temperature T , the criticality of quan-
tum fluctuations is cut off by the Planck time τP = h̄

kBT , with a

corresponding quantum correlation length ξQ ∼ τ
1/z
P where z

is the dynamical exponent; thus, the static classical correlation
volume contains a quantum mechanical core on length scales
and timescales governed by the Planck time. At low temper-
atures, ξQ provides the essential short-distance cutoff to the
static classical fluctuations of the order parameter. In pictorial
terms, we can visualize the fluctuations as being “annealed”
at short distances.

When the temperature is raised from absolute zero, there
comes a point where the finite correlation time becomes of
order the Planck time, and as the temperature is raised fur-
ther, the temporal correlation length becomes “stuck” at the
Planck time. The temperature when this occurs determines
the quantum classical crossover. Beyond this point, correla-
tions continue to grow but only in the spatial direction; the
dynamical aspect of the fluctuations is lost and the statistical
mechanics is governed purely by a sum over spatial configura-
tions, namely, the statistical mechanics has become classical.

More specifically near the quantum critical point at T = 0,
the zero-point fluctuations are governed by a finite correlation
length ξQ ∼ [g − gc(0)]−ν̃ , where g is the parameter that tunes
the transition and g = gc(0) is the location of the quantum
critical point. If we combine our expressions for the quantum
correlation length in the ordered phase close to the line of
phase transitions, we find

(g − gc)−ν̃ ∼
(

h̄

kBTc

) 1
z

(70)

which leads to

Tc ∼ (g − gc)ν̃z ≡ (g − gc)�̃ , (71)

where �̃ is called the shift exponent, and we see that � = ν̃z
if the effective dimension of the quantum system is below its
upper critical dimension where scaling is applicable. Here, we
keep with convention using this notation, hoping that there
will be no confusion with the the space-time volume average
of the energy density.

Larkin and Pikin [21] showed that the feedback effect of
the energy fluctuations could be reformulated in terms of
the critical temperature dependence of the free energy of the

decoupled system near the phase transition, allowing an anal-
ysis purely in terms of the universal critical behavior of the
decoupled system. By generalizing this parametric approach
to include the effect of quantum fluctuations, we are able to
analyze the evolution of the Larkin-Pikin system from finite to
zero temperature, showing that if the energy fluctuations are
not divergent at T = 0, the finite-temperature first-order phase
transition progressively weakens as temperature is reduced,
becoming continuous at zero temperature.

A. Generalized Larkin-Pikin action

The quantum mechanical action now picks up an additional
integral over time

S =
∫

d4x L ≡
∫ β

0
dτ

∫
d3x L, (72)

where β = 1
T and we recover the classical result for large T .

The space-time generalizations of Eqs. (12)–(14)

S [ψ, u] = SL[ψ] + SE [u] + SI [ψ, e]

=
∫

dτ d3x(LA[ψ] + LE [u] + LI [ψ, e]) (73)

now contain kinetic energy terms, so that

LL[ψ, b] = 1

2
(∂μψ )2 + a

2
ψ2 + b

4!
ψ4, (74)

where (∂μψ ) ≡ (ψ̇ )2 + (∇ψ )2 and we now identify a =
c(g − g0

c), where g0
c is the bare value of the critical coupling

constant. The elastic degrees of freedom are now described by

LE [u] = 1

2

[
ρu̇2

l +
(

K − 2

3
μ

)
e2

ll + 2μe2
ab

]
− σabeab, (75)

and strain-energy density interaction

LI [ψ, e] = λellψ
2 (76)

is unchanged. If we combine

LL + LI = 1

2
(∂μψ )2 + c

2
(g − gc[ell ])ψ

2 + b

4!
ψ4, (77)

where

gc[ell ] = g0
c − (2λ/c)ell (78)

is the strain dependent gc, so that (2λ/c) = −( dgc

d lnV ). For
notational simplicity and convenience, we shall set c = 1 in
the following development.

Following the argument of Larkin and Pikin in the classical
case, we choose periodic boundary conditions as the most
convenient way to integrate out the elastic degrees of free-
dom for the analogous quantum problem. It is then natural to
generalize the classical expression for the strain field (18) to
the quantum case summing over all space-time configurations
as

eab(�x, τ ) = eab(τ ) + 1

βV

∑
iνn

∑
�q �=0

× i

2
[qaub(q) + qbua(q)]ei(�q·�x−νnτ ), (79)
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where qα ≡ (�q, iνn), ub(q) ≡ ub(�q, iνn), and νn = 2πnT is the
Matsubara bosonic frequency. A priori, the uniform strain
tensor eab(τ ) involves configurations that are time dependent.
However, we recall that the integral of the strain field around
the toroidal solid∮

eab(�x, τ )dxb = eab(τ )
∮

dxb = ba(τ ) (80)

measures ba(τ ), the Burgers vector of the defects enclosed by
the torus. If we restrict ourselves to smooth Gaussian defor-
mations of the solid, then the Burgers vector is a topological
invariant, like the conserved winding number of superconduc-
tor. Changes in the Burgers vector are akin to flux creep in a
superconductor, and they involve the passage of dislocations
across the entire solid. Space-time configurations with such
moving defects will be associated with large actions, making
their contributions to the path integral exponentially small in
the thermodynamic limit. Therefore, the strain field for the
quantum Larkin-Pikin problem can be written

eab(�x, τ ) = eab + 1

βV

∑
iνn

∑
�q �=0

× i

2
[qaub(q) + qbua(q)]ei(�q·�x−νnτ ). (81)

As in the classical case, our next step is to integrate out the
Gaussian elastic degrees of freedom from the action

Z =
∫

D[ψ]
∫

D[u] e−S [ψ,u] −→ Z =
∫

D[ψ]e−S[ψ],

(82)
where the actions now involve integrals over space-time. We
write the effective action

S[ψ] = SL[ψ] + �S[ψ], (83)

where SL[ψ] = ∫
d4x LL[ψ] [(74)] and

e−�S[ψ] =
∫

D[e, u]e−(Se[u]+SI [ψ,e]). (84)

Again, our task is to cast this action into matrix form

SE + SI = 1

2

∑
q

uiMi ju j + λ
∑

j

u jψ
2
j

→ λ2

2

∑
i, j

ψ2
i M−1

i, j ψ2
j (85)

and to determine the nature of the induced order-parameter
interaction; now the summations run over the discrete wave
vector and Matsubara frequencies q ≡ (iνn, �q), where νn =
2π
β

n, �q = 2π
L ( j, l, k). Because of the form of the strain tensor

(81), the action in (84) separates in two terms, corresponding
to the q = 0 and the finite (�q, iνn) contributions. Integration
over the elastic degrees of freedom in (81) now results in
order-parameter interactions local and nonlocal both in space
and time.

Integrating over the elastic degrees of freedom (81) in (84)
(see Appendix B for details), we obtain the effective action

S[ψ] = S∗
L[ψ] − λ2

2

(
1

K
− 1

K + 4
3μ

)
×

[
1

βV

∫
d4x

∫
d4x′ψ2(�x) ψ2(�x′)

]
. (86)

Here,

S∗
L(ψ ) =

∫
d4x

[
1

2
(∂μψ )2 + g̃

2
ψ2 + b∗

4
ψ4

+ 1

2
ψ2(�x)Vdyn(x − x′)ψ2(�x′)

]
, (87)

where g̃ = (g − g0
c) and

b∗ = b − 12λ2

K + 4
3μ

(88)

is identical to that in the classical case (26). The Fourier
transform of Vdyn(x − x′) is

Vdyn(q) = λ2

K + 4
3μ

(
ν2

n/c2
L

�q2 + ν2
n/c2

L

)
, (89)

a dynamical order-parameter interaction where q ≡ (νn, �q) is
the wave vector in space-time. The effective action in the
quantum Larkin-Pikin problem is thus the sum of a (d + z)-
dimensional generalization of the classical effective LP action
and a dynamical interaction induced by quantum fluctuations.
Although Vdyn(q) in (89) has q dependence, it is still local
from a scaling perspective since Vdyn(q) is finite and nonsin-
gular in the limit q → 0. Equation (89) also has the same
scaling dimension as the original local repulsive interaction in
(74). Although Vdyn(q) does break Lorentz invariance, it does
not reduce the order-parameter symmetry. The universality of
a Wilson-Fisher fixed point is known to be robust to such
space-time symmetry breaking [35,36]. For this reason the
critical behavior of the clamped system is unaffected, and thus
Vdyn can be neglected in the local action.

We have therefore established that the generalized Larkin-
Pikin action, following the integration over the Gaussian strain
including both thermal and quantum fluctuations, is

S[ψ] = SL[ψ, g̃, b∗] − λ2

2

(
1

K
− 1

K + 4
3μ

)
×

[
1

βV

∫
d4x

∫
d4x′ψ2(x) ψ2(x′)

]
(90)

with the local action

SL[ψ, g̃, b∗] =
∫

d4x LL[ψ, g̃, b∗]

=
∫

d4x

[
1

2
(∂μψ )2 + g̃

2
ψ2 + b∗

4!
ψ4

]
, (91)

where b∗ is defined in (88). We note that (90) is a (d + z)-
dimensional generalization of the effective classical LP action
(24), where all space-time configurations are summed to in-
clude both thermal and quantum fluctuations. Here z is the
dynamical exponent associated with the temporal dimension
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since the dispersion ω ∝ qz leads to [ξτ ] = [ξ ]z where ξτ and
ξ are the correlation time and length, respectively.

B. Generalized Larkin-Pikin equations

The development of the approach is now a simple space-
time generalization of its classical counterpart, described in
Eqs. (40)–(49). First, we perform a Hubbard-Stratonivich
transformation of the space-time-independent interaction in
(90):

− λ2

2

(
1

κ

)[
1

βV

∫
d4x

∫
d4x′ ψ2(�x) ψ2(�x′)

]
→

∫
d4x

[
(λφ)ψ2(�x) + κ

2
φ2

]
, (92)

where
1

κ
= 1

K
− 1

K + 4
3μ

(93)

is the effective bulk modulus and we have introduced the
auxiliary “strain” field φ that is space-time independent. Then,
we may write

Z = e−S̃(φ) =
∫

Dψ e−S[ψ,φ], (94)

where S̃ = βF̃ and

S[ψ, φ] =
∫

d4x

[
LL(ψ, g̃) + λφψ2 + κ

2
φ2

]
(95)

that can be reexpressed as

S[ψ, φ] =
∫

d4x[LL(ψ, g̃ + 2λφ)] + κV β

2
φ2, (96)

where we see that the auxiliary variable φ shifts the “mass”
(e.g., tuning parameter) of the order parameter ψ by

g̃ → X = g̃ + 2λφ. (97)

Because the second term in (96) scales as the space-time
volume, we can solve for φ using a saddle-point evaluation

∂F̃ [φ]

∂φ
= 0 �⇒ [λ〈�2〉 + κφ]V = 0, (98)

where

�2 ≡
[

1

βV

∫
d4x ψ2(x)

]
(99)

is the space-time volume average of the energy density and

〈�2〉 =
∫

dψ �2e−SL[ψ]∫
dψ e−SL[ψ]

(100)

with SL as in (91). Equations (98), (99), and (100) lead to

φ = −λ

κ
〈�2〉. (101)

Equations (98)–(101) are identical to their classical coun-
terparts (28)–(37), apart from the replacement of a spatial
integral by a space-time integral in (99). The following de-
velopment, parametrizing the free energy of the clamped and
unclamped systems, precisely follows its classical counterpart

(41)–(49), but for completeness we include it here in its en-
tirety. The free energy of the clamped system is

e−F (g̃)
T =

∫
D[ψ] e−SL[ψ,g̃], (102)

where SL is defined in (73) and (74) and we have explicitly
included its dependence on the tuning parameter g̃. As in the
classical case, in writing (102) we have glossed over issues of
renormalization. In particular, self-energy corrections to the
order-parameter propagators will shift the quantum critical
value of gc from its bare value g0

c to a new value gc(0). All
of these renormalization effects can be absorbed into redefini-
tions of the appropriate variables, in particular, from now on
we will redefine g̃ = g − gc(0).

From (94) and (96) we can write the free energy for our
unclamped system as

F̃[φ, g̃] = F[X ] + κV

2
φ2, (103)

where

X = g̃ + 2λφ (104)

indicates the shifting the of the tuning parameter due to the
presence of energy fluctuations. Now

1

V

∂F
∂X

= 〈�2〉
2

(105)

so that

φ = −λ〈�2〉
κ

= − 2λ

V κ

(
∂F
∂X

)
≡ − 2λ

V κ
F ′[X ], (106)

where we have defined F ′[X ] ≡ ( ∂F
∂X ) for simplicity. There-

fore,

F̃ = F[X ] + 2λ2

V κ
(F ′[X ])2 (107)

and

X = g̃ − 4λ2

V κ
F ′[X ]. (108)

Let us define

f̃ ≡ 2λ

V κ
F̃ , f ≡ 2λ

V κ
F . (109)

Here we recall that the integrals in the action involve an
integral over time (72),

∫
d4x = ∫ β

0 dτ
∫

d3x where β = 1
T is

a boundary term, so that these free energies are determined at
fixed temperature. Therefore, the two equations describing the
unclamped system are

f̃ = f [X, T ] + λ( f ′[X, T ])2 (110)

and

g̃ = X + 2λ f ′[X, T ] (111)

which have to be solved self-consistently.
Equation (111) can be rewritten as

g̃ = X + 2λ2

κ
〈�2〉X (112)
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which leads to

dg̃

dX
= 1 − λ2V

κ
χψ2 , (113)

where

χψ2 =
∫ β

0
dτ

∫
d3x〈δψ2(�x)δψ2(0)〉 (114)

is the space-time average of the quantum and thermal
“energy” fluctuations. Since dg̃

dX = 0 corresponds to the de-
velopment of a first-order transition, as previously discussed
in the classical case, analogously the generalized LP criterion
is

κ
<˜

(
dgc

d ln V

)2

χψ2 , (115)

where we have assumed

gc[ell ] = gc − 2λell (116)

similar to (78). At zero temperature, this expression general-
izes the original LP criterion (1) to quantum phase transitions.
At finite temperatures, the critical temperature and the criti-
cal coupling constant are related by gc(Tc) = uT 1/�̃

c , so that
d ln gc = 1

�̃
d ln Tc and the LP criterion becomes

κ
<˜

(
dTc

d ln V

)2

�CV /Tc︷ ︸︸ ︷( g

2Tc

)2
χψ2 , (117)

where we have identified �Cv/Tc = (g/2Tc)2χψ2 with the
specific-heat capacity. Thus, we see that the generalized
Larkin-Pikin equation encompasses the original LP criterion,
(1) and also (57), in addition to being applicable at low tem-
peratures. Our next step is to identify a crossover scaling form
for the clamped free energy f that includes both thermal and
quantum critical fluctuations.

IV. QUANTUM ANNEALING
OF THE FIRST-ORDER TRANSITION

A. Amplitude factors

In order to generalize the Larkin-Pikin argument to T → 0,
we need to introduce a crossover scaling form for the clamped
free energy f in (110) and (111) that is applicable near both
the classical and the quantum critical points. The approach
we follow here that describes both the quantum and classical
cases [27] was adapted from an earlier study used to describe
Ising anisotropy at a Heisenberg critical point [37].

At a finite temperature, the location of the phase transition
is shifted by the thermal fluctuations, so that

gc(T ) = gc(0) − uT
1
�̃ , (118)

where �̃ is the shift exponent defined in (71); we note that if
the effective dimension of the quantum system is at or below
its upper critical dimension �̃ = ν̃z. For convenience, we will
shift the definition of g to absorb the zero-temperature QCP
critical coupling constant gc(0), i.e., g − gc(0) → g, so that
gc(T ) = −uT

1
�̃ . Now, temperature is a finite-size correction

to the quantum critical point, and the free energy is determined

FIG. 5. Schematic showing the dependence of the free energy of
the clamped system in the vicinity of the quantum critical point. The
scaling function about the QCP determines the amplitude factors for
the finite-temperature classical critical point (CCP), given by AI (T )
for a constant temperature sweep and AII (g) for a sweep at constant
tuning parameter. Here the location of the quantum critical point at
gc(0) is labeled as simply gc.

by a crossover function

f (g, T ) = g2−α̃�

(
T

1
�̃

g

)
(119)

which describes both the quantum critical point and the finite-
temperature classical critical point of the clamped system (see
Fig. 5), here we will use the convention that an exponent with
a tilde refers to the quantum case so that α and α̃ are classical
and quantum exponents, respectively. A key point is that at
finite temperature, critical behavior now occurs at the shifted
value of gc(T ), and the scaling behavior is governed by the
finite-temperature critical exponents. Therefore, for a fixed-
temperature scan (Fig. 5) for small g − gc(T ),

f (g, T ) = [g − gc(T )]2−αAI (T ), (120)

where AI (T ) is the amplitude factor for the classical critical
point occurring at g = gc(T ). Similarly, if we perform a sweep
through the phase transition at constant coupling constant g
(Fig. 5), then we can write

f [g, T ] ∼ (T − Tc[g])2−αAII (g), (121)

where AII (g) is amplitude factor for the quantum transition at
Tc[g] = (−g/u)�̃ . The scaling form (119) allows us to deter-
mine the form of these amplitude factors (see Appendix C),
given by

AI (T ) = a1T ( α−α̃

�̃
), AII (g) = a2g(1−�̃ )(2−α)+(α−α̃), (122)

where a1 and a2 are constants. The resulting expressions for
the singular parts of the free energy for constant temperature
and constant coupling constant sweeps (see Fig. 5) are

f [g, T ]

=
{

|g − gc(T )|2−α T
α−α̃

�̃ (constant T ),

|T − Tc[g]|2−α g(1−�̃ )(2−α)+(α−α̃) (constant g),

(123)

043440-11



PREMALA CHANDRA et al. PHYSICAL REVIEW RESEARCH 2, 043440 (2020)

where, since we are interested in the singular scaling behavior,
we have dropped the constants a1 and a2.

B. Clausius-Clapeyron relations as Tc → 0

We now examine how the discontinuities �S(Tc) and
�V (Tc) in entropy and volume evolve along the first-order
phase boundary as the transition Tc is lowered towards zero,
and connect them with the Clausius-Clapeyron relation. In this
discussion, we shall identify the tuning parameter g with the
pressure P, g ≡ P − Pc. Using Maxwell’s relations we have

dTc

dPc
≡ dTc

dgc
= − �V

�S

∣∣∣∣
T =Tc

. (124)

From (118), we have

dTc

dgc
∝ −T

1− 1
�

c . (125)

In the case of particular interest, that of three-dimensional
ferroelectrics, the dynamical exponent z = 1, so the effective
dimension de f f = 3 + z = 4 lies at the upper critical dimen-
sion. In this case, �̃ = ν̃z = 1

2 , we see that this dTc/dPc ∝
T −1

c , implying that �V/�S diverges as Tc → 0. To under-
stand how this happens, we now independently evaluate the
temperature dependencies of �V and �S.

To carry out this calculation, we need to input the quantum-
renormalized amplitude factors for the free energy into the
parametrized equations (110) and (111). We consider tun-
ing through the first-order phase transition at constant T =
Tc. The corresponding tuning variable g = g − gc(Tc) of the
clamped system in (123) is now replaced by the parametric
variable X describing the tuning parameter that has been
shifted by the long-range interactions g → X . The singular
part of the free energy, by (123), is then

f [X ] = −|X |2−αT
α−α̃

�̃
c . (126)

Using (110) and (111), the explicit forms of the quantum
Larkin-Pikin equations are then

f̃ [X ] = −|X |2−αT
α−α̃

�̃
c + λ

[
(2 − α)X 1−αT

α−α̃

�̃
c

]2
(127)

and

g[X ] = X − 2λ(2 − α)|X |1−αT
α−α̃

�̃
c sgn(X ). (128)

The only difference between this calculation and the origi-
nal Larkin-Pikin calculation is the presence of the amplitude

factors T
α−α̃

�̃
c . From the original Larkin-Pikin analysis, we

know that since g[X ] is a nonmonotonic function of X , the
inverse function X [g] is a discontinuous function of g, given
by X [g] = sgn(g)X+(|g|). In particular, at g = 0, X jumps
from −Xc to +Xc, Since the free energy f̃ [Xc] = f̃ [−Xc] is
an even function of X , it follows that the first-order transition
occurs at g = 0. Using g[Xc] = 0, we obtain

Xc = [2λ (2 − α)]
1
T

α−α̃

α�̃
c . (129)

To obtain �V = d f̃ /dg = f̃ ′[Xc]/g′[Xc], we need g′[X ]
and f̃ ′[X ]. First, we differentiate (128) with respect to X , and
using the expression (129) for Xc, we find g′[Xc] = α is just

a constant. Also, differentiating (127) with respect to X and
substituting (129), we find that

f̃ ′[X ] = −(α/2λ)Xc (130)

from which we obtain

�V (Tc) ∝ −T
α−α̃

α�̃
c . (131)

Similarly, to obtain �S = −d f̃ /dTc = − f̃ ′[X ]dX/dTc,we
need dX/dTc. Now, since g = g + uT 1/�̃

c and g′[Xc] = α, we
obtain

dX

dTc
= 1

g′[Xc]

dg
dTc

= u

α�̃
T

1
�̃

−1
c (132)

so that

�S[Tc] = − f̃ ′[Xc]
dX

dTc
∝ T

α−α̃

α�̃
c T

1
�̃

−1
c . (133)

For the case �̃ = ν̃z = 1
2 , α = 1

2 , α̃ = 0, both �V ∼ T 2
c

and �S ∼ T 3
c vanish at absolute zero, but in such a way

that their ratio diverges as Tc → 0, in agreement with (125).
Naively, the divergence of �V/�S as Tc → 0 might be taken
as evidence that the tendency towards a first-order transition
increases as the temperature goes to zero, yet the paradox
is resolved by noting that �S and �V simply vanish at
different rates, still signifying an approach to a continuous
quantum phase transition. More generally, so long as the
finite-temperature exponent α exceeds the quantum exponent
α̃, α > α̃, (131) indicates that

lim
Tc→0

�V → 0 (134)

so that quite generally, there is no latent work as Tc goes to
zero, indicating that quantum fluctuations “anneal” the zero-
temperature quantum phase transition to become continuous
(see Fig. 6).

V. LARKIN-PIKIN PHASE DIAGRAM

We therefore have a system with a line of classical
first-order transitions that ends in a T = 0 quantum critical
point. Next, we consider application of a field conjugate and
parallel and antiparallel to the order parameter. In this sec-
tion we present the scaling approaches to the critical end
points, classical and quantum, and the resulting temperature-
field-quantum tuning parameter (g) phase diagram of the
generalized Larkin-Pikin problem.

A. Identification of the classical critical end points

We can work out the scaling of the critical end point in the
LP mechanism using the scaling form for the free energy

f ∝ −t2−α�

(
h

tβδ

)
, (135)

where h is the dimensionless external field, t = (T − T 0
c )/T 0

c
is the reduced temperature, and T 0

c is the transition temper-
ature of the clamped system. We want to know how (135)
behaves in a finite field when t is small compared with h1/βδ .
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FIG. 6. Schematic figure showing the evolution of the first-order phase transition in the approach to the quantum annealed critical point for
the case �̃ = ν̃z = 1

2 , α = 1
2 , α̃ = 0. (a) Evolution of jump in volume, (b) dependence of �V and �S on Tc, and (c) Tc dependence of �V/�S.

In this limit we know that f ∝ h
1
δ
+1 and (135) can be rewritten

f ∝ −h
1
δ
+1�

( t

h1/βδ

)
= −h

2−α
βδ �

( t

h1/βδ

)
, (136)

where, using the identity 2 − α = β(1 + δ), we have substi-
tuted (δ + 1)/δ = (2 − α)/δβ. Comparing (135) and (136),
we see that

� =
(

tβδ

h

)1+ 1
δ

�. (137)

The scaling form of the free energy, defined by (136) and
(137), results in the finite-field Larkin-Pikin equations

f̃ = h1+1/δ�
( X

h1/β/δ

)
+ λ

[
h

1−α
βδ �′

( X

h1/βδ

)]2

,

t = X − 2λ

[
1

h(α−1)/βδ
�′(0) + X

hα/βδ
�′′(0)

]
, (138)

where details of the derivation of (138) are presented in
Appendix D.

We recall that criticality of f [X, h] only occurs at X = 0
(t = tc) indicating that f̃ [X, h] can only be critical at X = 0.
In the region of first-order transitions t[X ] is nonmonotonic
with two points, a maxima and minima, where the gradient
dt/dX = 0 goes to zero. As we approach the critical field
hc, the maxima and minima merge together at a point of
inflection, meeting at X = 0. As a result, we deduce that
the critical end point occurs when X = 0 (for criticality) and
at dt/dX = 0 (merger of maximum and minimum). More
succinctly, the critical end point corresponds to the inflection
point in t (X ). When we impose these two conditions, we can
solve for hc and tc = (TCEP − T (0)

c )/T (0)
c , which from (138)

implies that

hc = (2λ�′′)δβ/α (dt/dX = 0),

tc = −2λ�′

h
α−1
δβ

c

= −h
1
δβ

c
�′

�′′ = −(2λ�′′)
1
α

�′

�′′ (X = 0).

(139)

We can be sure that these quantities are both positive because
�S = −∂ f [t, h]/∂t = h

1−α
βδ �′ is the change in the entropy

due to the field, and we expect this to be negative, so that
�′ < 0 and hence tc > 0. Similarly, − ∂2 f

∂t2 ∼ �C
T ∼ h−α/δβ�′′.

This quantity gets bigger as the field is reduced, so that �′′ >

0, guaranteeing that hc > 0 is real and positive.

B. Field behavior close to the quantum critical end point

When we look at this problem as part of the approach to a
QCP, we must now include the amplitude AI (Tc) = T (α−α̃/�̃ )

c .
The tuning parameter t of the classical calculation now be-

comes g = g − gc(Tc) = g − uT
1
�

c . If we now expand around
the finite-temperature critical point at a specific Tc, the singu-
lar free energy of the clamped system is

f [g, h] = −h
2−α
βδ �

(
δg

h1/βδ

)
AI (Tc). (140)

The Larkin-Pikin equations now become

f̃ [X, h] = − h
2−α
βδ AI (Tc)�

(
X

h1/βδ

)
+ λ

[
h

1−α
βδ AI (Tc)�′

(
X

h1/βδ

)]2

,

g[X ] = X − 2λAI (Tc)

[
1

h(α−1)/βδ
�′(0) + X

hα/βδ
�′′(0)

]
,

(141)

where again f̃ [X, h] refers to the free energy of the unclamped
system.

As discussed in the last section, the critical end point oc-
curs at X = 0. The critical end point is then at g = −uT 1/�̃

c +
g[0]. When we do the subsequent algebra, we see that we get
similar equations to those we obtained at finite temperature
(138) with the replacement λ → λAI (Tc). Taking Eq. (139)
and replacing tc → gc and λ → λAI (Tc), we obtain

hc ∝ (λAI (Tc))δβ/α = (λ)δβ/α (Tc)
δβ(α−α̃)

α�̃ ,

gc ∝ (λAI (Tc))
1
α = λ

1
α (Tc)

(α−α̃)
α�̃ . (142)

These equations are valid in the plane of constant Tc. For small
λ we can transform these expressions into the plane of con-
stant g, writing Tc = [gc(0) − g]�̃ , while the location of the
critical end point is at a temperature TEP = Tc + δTEP, where
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FIG. 7. Evolution of the critical end points with Tc.

δTEP = g(dTc/dg) ∝ g(gc(0) − g)�̃−1, which then gives

hc ∝ λ
δβ

α [gc(0) − g]
δβ(α−α̃)

α ,

δTEP ∼ λ
1
α [gc(0) − g]

α−α̃
α

−(1−�̃ ), (143)

where we have restored gc(0). For the Gaussian fixed point
considered by Larkin and Pikin, with α̃ = 0, α = 1

2 , β = 1
4 ,

δ = 5, �̃ = 1
2 , we have

Tc ∼ (gc − g)1/2,

hc ∼ λ5/2(gc − g)5/4 ∼ T 5/2
c ,

δTEP ∼ λ2(gc − g)1/2, (144)

which yields a pointed, V -shaped “anteater’s tongue” as the
surface of first-order transitions in the LP problem. In Fig. 7
we present a schematic of the evolution of the critical end
points as a function of Tc, and we note that the full Larkin-
Pikin phase diagram is displayed in Fig. 1.

VI. IMPLICATIONS FOR OBSERVABLE PROPERTIES

The specific-heat exponent α of the clamped (fixed-
volume) system plays a key role in the universality of the
classical Larkin-Pikin criterion (1) since the coupling of the
order parameter to the lattice is a strain-energy density. For
the scalar (n = 1) case considered here, α > 0, so that �κ

is singular and the finite-temperature transition is always first
order in the unclamped (fixed-pressure) system. By contrast
for d + z > 4, the system is above its upper critical dimension
and there is a continuous transition at T = 0 and quantum
annealed criticality. The amplitudes of thermodynamic quan-
tities will decrease with temperature in the approach to the
quantum critical point, and we have specifically presented this
behavior for the latent work and the entropy.

A key motivation for our study has been recent low-
temperature experiments on polar insulators that display
quantum criticality even though their classical transitions are
first order. Many ferroelectrics have scalar order parameters
with dynamical exponent z = 1, so such three-dimensional

materials are in their marginal dimension; logarithmic cor-
rections to the bulk modulus are certainly present but they
are not expected to be singular. Indeed, such contributions
to the dielectric susceptibility χ in the approach to ferroelec-
tric quantum critical points have not been observed to date
[19]; furthermore, here the temperature dependence of χ is
described well by a self-consistent Gaussian approach appro-
priate above its upper critical dimension [19,20]. Therefore,
there may be a very weak first-order quantum phase transition
[38] but experimentally it appears to be indistinguishable from
a continuous one. We note that near quantum criticality the
main effect of long-range dipolar interactions, not included in
this treatment, is to produce a gap in the longitudinal fluctu-
ations, but the transverse fluctuations remain critical [39–41];
the excellent agreement between theory and experiment at
ferroelectric quantum criticality confirms that this is the case
[19,20].

Dielectric loss and hysteresis measurements can be used
to probe the line of classical first-order transitions, and to
determine the nature of the quantum phase transition. The
Gruneisen ratio (�), the ratio of the thermal expansion and
the specific heat, is known to change signs across the quantum
phase transition [42,43]; furthermore, it is predicted to diverge
at a 3D ferroelectric quantum critical point as � ∝ 1

T 2 so this
would be a good indicator of underlying quantum criticality
[20]. Both the bulk modulus and the longitudinal sound veloc-
ity should display features near quantum annealed criticality,
where specifics are material dependent. Elastic anisotropy
may drive this system into an inhomogeneous state [32,34,44].
The coupling of domain dynamics to anisotropic strain has
been studied classically for ferroelectrics [45], and implica-
tions for the quantum case are a topic for future work.

VII. DISCUSSION AND OPEN QUESTIONS

In summary, we have developed a theoretical framework to
describe compressible insulating systems that have classical
first-order transitions and display pressure-induced quantum
criticality. We have generalized the Larkin-Pikin approach
[21] to the quantum case using crossover scaling forms that
describe both its classical and its quantum behavior. We show
that when the system is above its upper critical dimensionality,
there is no latent work at the quantum transition indicating that
it is continuous. We then include a field conjugate to the order
parameter, and derive the Larkin-Pikin phase diagram with
three critical points, two classical and one quantum. Following
the original Larkin-Pikin analysis, ours has been performed
for a scalar order parameter and isotropic elasticity where
the phase transition is first order for all finite temperatures;
here, we show that for d + z > 4 the quantum transition is
continuous. The key point is that a compressible material can
host a quantum critical phase even if it displays a first-order
transition at ambient pressure. More generally, the order of the
classical phase transition can be different from its quantum
counterpart.

An interesting question arising from our work is whether
the Larkin-Pikin mechanism can be understood in a broader
field-theoretic context. The long-range interaction that drives
the Larkin-Pikin mechanism relies on the presence of a fi-
nite shear modulus: a rigidity of a solid that is absent in a

043440-14



QUANTUM ANNEALED CRITICALITY: A SCALING … PHYSICAL REVIEW RESEARCH 2, 043440 (2020)

liquid. The Larkin-Pikin derivation has a topological flavor,
in that the q = 0 “boundary component” of the strain which
drives the long-range interaction, when integrated around a
closed loop on a torus, is a topological invariant that counts
the number of enclosed defects (19) and which is closely
connected with the concept of torsion [46]. In a system with
boundaries, we still expect the long-range interaction, but now
derived from the boundary waves of the material. There is thus
a kind of bulk-boundary correspondence in the phenomenon
that may be topological in character. One possibility here is
that the Larkin-Pikin interaction, which breaks the Lorentz
invariance of the short-range physics, is a kind of symmetry-
breaking anomaly [47].

Recently, the possibility of a line of discontinuous transi-
tions ending in a quantum critical point has also been studied
in frustrated spin models [48,49], in multiferroics [50,51], and
in transition metal difluorides [52]. There are also experiments
on metallic systems [53–55] that suggest quantum annealed
criticality, so a quantum generalization of the electronic case
[56] with possible links to previous work on metallic magnets
should be pursued [8]; implications for doped paraelectric ma-
terials and polar metals [20] will also be explored. Extension
of this work to quantum transitions between two distinct or-
dered states separated by first-order classical transitions may
be relevant to the iron-based superconductors [57] and to the
enigmatic heavy-fermion material URu2Si2 where quantum
critical end points have been suggested [58].

Finally, the possibility of quantum annealed criticality in
compressible materials, magnetic and ferroelectric, provides
a new setting for the exploration of exotic quantum phases
where a broad temperature range can be probed with easily
accessible pressures due to the lattice sensitivity of these
systems. In particular, the elimination of the Larkin-Pikin
mechanism at T = 0 exposes a bare quantum critical point,
a state of matter with quantum fluctuations on all scales, with
the potential for instabilities into novel quantum phases.
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APPENDIX A: GAUSSIAN STRAIN INTEGRATION
IN THE CLASSICAL CASE

We would like to integrate out the Gaussian elastic degrees
of freedom from the action so that the partition function takes
the form

Z =
∫

D[ψ]
∫

D[u]e−S [ψ,u] −→ Z =
∫

D[ψ]e−S[ψ],

(A1)
where the effective action S is a function of the order parame-
ter ψ . We write

S[ψ] = SL[ψ] + �S[ψ], (A2)

where

SL[ψ] = 1

T

∫
d3x

[
1

2
(∂μψ )2 + a

2
ψ2 + b

4!
ψ4

]
(A3)

describes the physics of the order parameter in the clamped
system with tuning parameter a ∝ T −Tc

TC
and b > 0 as in (11)

and (12). Our task is to calculate the Gaussian integral (21):

e−�S[ψ] =
∫

D[eab, uq]e−(SE +SI ) (A4)

with

SE + SI = 1

T

∫
d3x

[
1

2

(
K − 2

3
μ

)
e2

ll (�x) + μeab(�x)2 + λψ2(�x)ell (�x)

]
. (A5)

As discussed in the main text, we separate the strain field into
its q = 0 and finite-q components (18):

eab(�x) = eab + 1√
V

∑
�q �=0

i

2
[qaub(�q) + qbua(�q)]ei �q·�x, (A6)

so that the action (A5) divides into two terms SE + SI =
S[eab, ψ] + S[u, ψ]. We next define the integrals∫

deabe−S[eab,ψ] = e−S1[ψ]

and ∫
D[u]e−S[u,ψ] = e−S2[ψ] (A7)

that treat the q = 0 and finite-q elastic contributions to (A4),
respectively.

The uniform part of the action is

S[eab, ψ] = V

T

[
1

2

(
K − 2

3
μ

)
e2

ll + μe2
ab

]
+ V

T
λψ2

q=0ell

= 1

2
eabMabcd ecd + vabeab, (A8)
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where ψ2
�q = 1

V

∫
d3x ψ2(�x)ei �q·�x is the Fourier transform of the

fluctuations in “energy density” and

Mabcd = 1

T

⎧⎪⎪⎪⎨⎪⎪⎪⎩K

PL
abcd︷ ︸︸ ︷

(δabδcd ) +2μ

PT
abcd︷ ︸︸ ︷(

δacδbd − 1

3
δabδcd

)⎫⎪⎪⎪⎬⎪⎪⎪⎭, (A9)

vab = V

T
λψ2

q=0δab. (A10)

In (A9), PL
abcd and PT

abcd are independent projection operators
(P�

abe f P�
e f cd = P�

abcd , � ∈ L, T ) associated with the longitudi-
nal and transverse components of the strain.

When we integrate over the uniform part of the strain field
(A8),

S[eab, ψ] = 1
2 eabMabcd ecd + vabeab → S1[ψ]

= − 1
2vabM−1

abcdvcd . (A11)

Because of the independent nature of the projection operators
PL,T

abcd in (A9), we can write the inverse of M as

M−1
abcd = T

V

[
1

K
(δabδcd ) + 1

2μ

(
δacδbd − 1

3
δabδcd

)]
, (A12)

so the Gaussian integral over the uniform part of the strain
field yields

S1[ψ] = −1

2
vabM−1

abcdvcd = − V

2T

λ2

K

(
ψ2

q=0

)2
, (A13)

which can also be written as

S1[ψ] = − λ2

2T

(
1

K

)[
1

V

∫
d3x

∫
d3x′ψ2(�x) ψ2(�x′)

]
.

(A14)

The nonuniform part of the action is

S[u, ψ] = 1

T

∑
�q �=0

(
1

2
u∗

a(�q)Mabub(�q) + �a(�q) · �u(�q)

)
, (A15)

where

Mab =
[(

K − 2

3
μ

)
qaqb + μ(q2δab + qaqb)

]
,

�aq = (
iλ

√
V ψ2

−q

)
�q. (A16)

The matrix entering the fluctuating part of the action S[u, ψ]
in (A7) can be projected into the longitudinal and transverse
components of the strain

Mab(�q) = q2

[(
K + 4

3
μ

)
q̂aq̂b + μ(δab − q̂aq̂b)

]
, (A17)

where q̂a = qa/q are the direction cosines of �q. Inversion of
this matrix is then

M−1
ab (�q) = q−2

[(
K + 4

3
μ

)−1

q̂aq̂b + μ−1(δab − q̂aq̂b)

]
,

(A18)

so the Gaussian integral over fluctuating part of the strain field
leads to

S[u, ψ] = 1

T

∑
�q �=0

1

2
u∗

a(�q)Mab(�q)ub(�q) + �a(�q) · �u(�q)

→ S2[ψ] = − 1

2T

∑
�q �=0

aa(−�q)M−1
ab (�q)ab(�q)

= − V

2T

∑
�q �=0

ψ2
−qψ

2
q

λ2

K + 4
3μ

. (A19)

We can rewrite this as a sum over all �q, plus a remainder at
�q = 0:

S2[ψ] = − V

2T

∑
�q

ψ2
−qψ

2
q

λ2

K + 4
3μ

+ V

2T

(
ψ2

q=0

)2 λ2

K + 4
3μ

= − 1

2T

λ2

K + 4
3μ

∫
d3x ψ4(�x) + V

2T

(
ψ2

q=0

)2 λ2

K + 4
3μ

(A20)

which can be reexpressed as

S2[ψ] = − λ2

2T

(
1

K + 4
3μ

){∫
d3x ψ4(�x) −

[
1

V

∫
d3x

∫
d3x′ψ2(�x) ψ2(�x′)

]}
. (A21)

The first term is a local attraction while the second term corresponds to a long-range repulsion.
When we combine (A14) and (A21), we obtain

�S[ψ] = − λ2

2T

{(
1

K + 4
3μ

)∫
d3x ψ4(�x) +

(
1

K
− 1

K + 4
3μ

)[
1

V

∫
d3x

∫
d3x′ψ2(�x) ψ2(�x′)

]}
. (A22)

Recalling (A2), we note that we can group the first term in (A22) in the local SL[ψ] (A3) to obtain the results

S[ψ] = SL[ψ, a, b∗] − λ2

2T

(
1

K
− 1

K + 4
3μ

)[
1

V

∫
d3x

∫
d3x′ψ2(�x) ψ2(�x′)

]
, (A23)

where

SL[ψ, a, b∗] = 1

T

∫
d3x

[
1

2
(∂μψ )2 + a

2
ψ2 + b∗

4!
ψ4

]
(A24)
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with a renormalized local interaction

b∗ = b − 12λ2

K + 4
3μ

(A25)

as in the main text [Eqs. (24)–(26)].

APPENDIX B: GAUSSIAN STRAIN INTEGRATION
IN THE QUANTUM CASE

We would like to integrate out the Gaussian elastic degrees
of freedom so that the partition function takes the form

Z =
∫

D[ψ]
∫

D[u]e−S [ψ,u] −→ Z =
∫

D[ψ]e−S[ψ],

(B1)
where the integrals are over space-time [Eq. (73)], S =∫

d4x L ≡ ∫ β

0 dτ
∫

d3x L. We write the effective action

S[ψ] = SL[ψ] + �S[ψ], (B2)

where

SL[ψ] =
∫

d4x

[
1

2
(∂μψ )2 + a

2
ψ2 + b

4!
ψ4

]
(B3)

and

e−�S[ψ] =
∫

D[e, u]e−(SE [u]+SI [ψ,e]) (B4)

with

SE + SI =
∫

d4x

[
ρ

2
u̇2

l +
(

K − 2

3
μ

)
e2

ll (�x)

+ 1

2
2μeab(�x)2 + λψ2(�x)ell (�x)

]
. (B5)

This action can be cast into matrix form

SE + SI = 1

2

∑
q

uiMi ju j + λ
∑

j

u jψ
2
j

→ λ2

2

∑
i, j

ψ2
i M−1

i, j ψ2
j , (B6)

where now the summations run over the discrete wave vector
and Matsubara frequencies q ≡ (iνn, �q), where νn = 2π

β
n, �q =

2π
L ( j, l, k). As discussed in the main text, we separate out the

static �q = 0 component of the strain tensor (81), writing

eab(x, τ ) = eab + 1√
V β

∑
iνn

∑
�q �=0

i

2
[qaub(q) + qbub(q)]

× ei(�q·�x−νnτ ). (B7)

We note that there is no time dependence in the uniform part
of the strain since we restrict ourselves to smooth Gaussian
deformations of the solid [see discussion in main text pre-
ceding (81)]. However, the fluctuating component includes all
Matsubara frequencies; with these caveats, the quantum inte-
gration of the strain fields closely follows that of the classical
case. Given the form of the elastic tensor (B7), the action (B6)
naturally divides into two terms

SE + SI = S[eab, ψ] + S[u, ψ] (B8)

corresponding to the distinct uniform and finite-�q contribu-
tions to the strain, and we define the respective integrals∫

deabe−S[eab,ψ] = e−S1[ψ]

and ∫
D[u]e−S[u,ψ] = e−S2[ψ], (B9)

so that

�S[ψ] = S1[ψ] + S2[ψ]. (B10)

The uniform part of the action

S[eab, ψ] =
∫

d4x

[
1

2

(
K − 2

3
μ

)
e2

ll + 1

2
2μe2

ab

]
+ V

T
(λψ2

q=0)ell

= 1

2
eabMabcd ecd + vabeab, (B11)

where

Mabcd =
[

K (δabδcd ) + 2μ

(
δacδbd − 1

3
δabδcd

)]
,

vab = V βλψ2
q=0δab (B12)

is similar to the classical case (A9), but now

ψ2
q = 1

V β

∫
d4x ψ2(x)e−i(�q·�x−νnτ ) (B13)

is the space-time Fourier transform of the order-parameter
intensity. When we integrate over the uniform part of the strain
field, we obtain

S[eab, ψ] = 1

2
eabMabcd ecd + vabeab → S1[ψ]

= −1

2
vabM−1

abcdvcd (B14)

which, as in the classical case, can be reexpressed as

S1[ψ] = −λ2βV

2K

(
ψ2

q=0

)2
(B15)

using (A9), (A12), and (B12) where β = 1
T .

The nonuniform part of the elastic contribution to (B4) is

S[u, ψ] =
∑
iνn

∑
�q �=0

(
1

2
u∗

a(q)Mabub(q) + �a(q) · �u(q)

)
, (B16)

where q = (�q, iνn) and we use roman letters (e.g., a, b) to
denote spatial variables so that qa is a spatial component of
q. Here,

Mab =
[
ρν2

n

(
K − 2

3
μ

)
qaqb + μ(q2δab + qaqb)

]
,

�aq = (
iλ

√
V β ψ2

−q

)
�q. (B17)
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This matrix can be projected into its longitudinal and trans-
verse components

Mab =
{[

ρν2
n +

(
K+ 4

3
μ

)]
q̂aq̂b+

(
ρν2

n + μ
)
(δab − q̂aq̂b)

}
,

(B18)
where q̂a = qa/q is the unit vector. Inversion of this matrix is
then

M−1
ab =

[
1

ρ
(
ν2

n + c2
Lq2

) q̂aq̂b + 1

ρ
(
ν2

n + c2
T q2

) (δab − q̂aq̂b)

]
,

(B19)
where

c2
L = K + 4

3μ

ρ
, c2

T = 2μ

ρ
(B20)

are the longitudinal and transverse sound velocities; the two
terms appearing in M−1 are recognized as the propagators for
longitudinal and transverse phonons.

When we integrate over the fluctuating component of the
strain field, only the longitudinal phonons couple to the order

parameter:

1

2

∑
iνn

∑
�q �=0

u∗
a(q)Mab(q)ub(q) + �a(q) · �u(q)

→ S2[ψ] = −1

2

∑
iνn

∑
�q �=0

aa(−q)M−1
ab (q)ab(q)

= −V βλ2

2

∑
iνn,�q �=0

ψ2
−qψ

2
q

(
q2

ρν2
n + (

K + 4
3μ

)
q2

)
. (B21)

In this last term (
q2

ρν2
n + (

K + 4
3μ

)
q2

)
, (B22)

the �q = 0 term vanishes for any finite νn, but in the case where
νn = 0, the limiting �q → 0 form of this term is finite:

(
q2

ρν2
n + (

K + 4
3μ

)
q2

)∣∣∣∣
�q→0

=
{

0, νn �= 0
1

K+ 4
3 μ

, νn = 0. (B23)

We can thus replace

∑
iνn,�q �=0

ψ2
−qψ

2
q

(
q2

ρν2
n + (

K + 4
3μ

)
q2

)
→

∑
iνn,�q

ψ2
−qψ

2
q

(
q2

ρν2
n + (

K + 4
3μ

)
q2

)
−

(
ψ2

q=0

)2

K + 4
3μ

(B24)

so that

S2[ψ] = V βλ2

2
(
K + 4

3μ
) (ψ2

q=0

)2 − V βλ2

2

∑
iνn,�q

ψ2
−qψ

2
q

(
q2

ρν2
n + (

K + 4
3μ

)
q2

)
, (B25)

which can be rewritten as

S2[ψ] = V βλ2

2
(
K + 4

3μ
)
⎧⎨⎩(

ψ2
q=0

)2 −
∑
iνn,�q

ψ2
−qψ

2
q

(
1 − ν2

n/c2
L

ν2
n/c2

L + q2

)⎫⎬⎭, (B26)

where cL is defined in (B20).
If we now combine (B15) and (B26), recalling (B10), we obtain

�S = −V βλ2

2

⎧⎨⎩
(

1

K
− 1

K + 4
3μ

)(
ψ2

q=0

)2 − −
(

1

K + 4
3μ

)∑
iνn,�q

ψ2
−qψ

2
q

(
1 − ν2

n/c2
L

ν2
n/c2

L + q2

)⎫⎬⎭. (B27)

The useful space-time expression ∫
d4x

ei(q−q′ )x

βV
= δqq′ (B28)

allows us to rewrite (B27) in space-time coordinates as

�S = −λ2

2

{
1

βV κ

∫
d4x d4x′ψ2(x)ψ2(x′) −

(
1

K + 4
3μ

)∫
d4x [ψ4(x)] +

∫
d4x d4x′ψ2(x)Vdyn(x − x′)ψ2(x′)

}
, (B29)

where

Vdyn(x − x′) = 1

βV

∑
�q,iνn

e−i(�q·�x−νnτ )(
K + 4

3μ
) ν2

n/c2
L

ν2
n/c2

L + q2
(B30)
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with
1

κ
= 1

K
− 1

K + 4
3μ

(B31)

is the effective bulk modulus. Recalling (B2), we note that we can group the second and third terms in (B29) in SL[ψ] (B3) to
obtain the results

S[ψ] = SL[ψ] − λ2

2

(
1

K
− 1

K + 4
3μ

)[
1

βV

∫
d4x

∫
d4x′ψ2(x) ψ2(x′)

]
, (B32)

with

SL[ψ] =
∫

d4x

[
1

2
(∂μψ )2 + a

2
ψ2 + b∗

4!
ψ4 + 1

2
ψ2(x)Vdyn(x − x′)ψ2(x′)

]
, (B33)

where the Fourier transform of Vdyn(x − x′) is

Vdyn(q) = λ2

K + 4
3μ

(
ν2

n/c2
L

�q2 + ν2
n/c2

L

)
(B34)

and

b∗ = b − 12λ2

K + 4
3μ

(B35)

as in the main text [Eqs. (86)–(88)]. We note that (B34) is
finite and nonsingular in the limit q → 0, and has the same
scaling dimensions as the original local repulsive interaction
in (B3); from a scaling perspective it is thus local and will not
affect the critical behavior of the clamped system.

APPENDIX C: DERIVATION OF THE AMPLITUDE
FACTORS FOR THE CROSSOVER SCALING

In order to generalize the Larkin-Pikin argument to T → 0,
we need to introduce a crossover scaling form for the clamped
free energy f in (110) and (111) that is applicable near both
the classical and the quantum critical points [27]. At a finite
temperature, the location of the phase transition is shifted by
the thermal fluctuations, so that

gc(T ) = gc(0) − uT
1
�̃ , (C1)

where �̃ is called the shift exponent; we note that if the
effective dimension of the quantum system is below its upper
critical dimension �̃ = ν̃z. For convenience, we will take the
zero-temperature QCP critical coupling constant to be zero,
gc(0) = 0. Now, temperature is a finite-size correction to the
quantum critical point, and the free energy is determined by a
crossover function

f (g, T ) = g2−α̃�

(
T

1
�̃

g

)
(C2)

that describes both the quantum critical point and the finite-
temperature classical critical point of the clamped system (see
Fig. 5); here, we will use the convention that α and α̃ refer to
the classical and quantum exponents, respectively. At a finite
temperature the critical behavior now occurs at the shifted
value of gc(T ), governed by the finite-temperature specific-
heat exponent α. For a fixed-T scan with small g − gc(T ), the
singular part of the free energy is

f (g, T ) = [g − gc(T )]2−αAI (T ), (C3)

where AI (T ) is the amplitude factor for the classical critical
point occurring at Tc = T .

The scaling form (C2) allows us to determine the form
of this amplitude factor. The crucial observation is that the
classical critical point occurs at a value T 1/�/g = −1/u, so
that �(�x) must have a singularity of the form (g + uT

1
�̃ )2−α =

g2−α (1 + u T 1/�̃

g )2−α ∼ (1 + ux)2−α , so that the scaling func-
tion takes the form

�(�x) = (1 + ux)2−α�̃(�x). (C4)

To see this in detail, let us rewrite (C2) as

f (g, T ) = [g − gc(T )]2−α g2−α̃

[g − gc(T )]2−α
�

(
T

1
�

g

)

= [g − gc(T )]2−α gα−α̃(
1 + u T

1
�̃

g

)2−α
�

(
T

1
�̃

g

)
. (C5)

In other words,

f (g, T ) = [g − gc(T )]2−αgα−α̃�̃

(
T

1
�

g

)
, (C6)

where

�̃(�x) = �(�x)

(1 + ux)2−α
. (C7)

To ensure a classical phase transition at finite temperature with
the right exponent, the crossover function �̃ must be smooth
around x = −1/u, in other words, the original crossover func-
tion contains a hidden singularity at x = −1/u and factorizes
as follows:

�(�x) = (1 + ux)2−α�̃(�x), (C8)

as inferred in (C4). Thus, at finite temperature, the singularity
at zero temperature splits into a shifted singularity with mod-
ified exponent 2 − α:

f (g, T ) = [g − gc(T )]2−αA[g, T ], (C9)

where the amplitude factor is given by

A[g, T ] = gα−α̃�̃

(
T

1
�

g

)
. (C10)
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Suppose we carry out a sweep at constant temperature
Tc (Fig. 5); then, near the classical critical line, we may re-

place g = gc(Tc) = uT
1
�̃

c , so that T 1/�
c /g = −1/u inside the

crossover function and

f [g, Tc] ∼ (g − gc)2−αAI (Tc), (C11)

where

AI (Tc) = A[gc(T ), Tc] = a1T
( α−α̃

�̃
)

c , (C12)

and a1 = [uα−α̃�̃(− 1
u )]. Likewise, if we carry out a sweep

through the phase transition at constant gc (Fig. 5), then we
can write

f [gc, T ] ∼ (T − Tc)2−αAII (gc), (C13)

where

AII (gc) =
(

dgc

dT

)2−α

gα−α̃
c �̃

(
−1

u

)
= a2g(1−�)(2−α)+(α−α̃)

c (C14)

with a2 = ( u�

�̃
)
2−α

�̃(− 1
u ). Summarizing, the amplitude fac-

tors are then

AI (Tc) = a1T
( α−α̃

�̃
)

c , AII (gc) = a2g(1−�)(2−α)+(α−α̃)
c (C15)

as given in (122) in the main text.

APPENDIX D: DERIVATION OF THE LARKIN-PIKIN
EQUATIONS IN FINITE FIELD

We use our scaling form for the free energy

f ∝ −t2−α�

(
h

tβδ

)
, (D1)

where h is the dimensionless external field, t = (T − T 0
c )/T 0

c
is the reduced temperature, and T 0

c is the transition tempera-
ture of the clamped system. We want to describe the behavior

of (D1) when t is small compared with h1/βδ . In this limit we
know that f ∝ h

1
δ
+1 and (D1) can be rewritten

f ∝ −h
1
δ
+1�

( t

h1/βδ

)
= −h

2−α
βδ �

( t

h1/βδ

)
, (D2)

where, using the identity 2 − α = β(1 + δ), we have substi-
tuted (δ + 1)/δ = (2 − α)/δβ. Comparing (D1) and (D2), we
obtain

� =
(

tβδ

h

)1+ 1
δ

�. (D3)

If y = t
h1/βδ and z = y−βδ , then we have

�(y) = yβ(1+δ)�(y−βδ ) = y2−α�(y−βδ ). (D4)

We note that at large values of z = h/tβδ , small values of
y = t

h1/βδ , the free energy can be expanded perturbatively in y
around y = 0, so that

f [X, h] = −h
2−α
βδ

[
�(0) + X

h1/βδ
�′(0) + X 2

2h2/βδ
�′′(0)

]
,

(D5)

where we have replaced t by the parametrized variable X of
the unclamped material. This means that

∂ f

∂X
≡ f ′

X = −
[

1

h(α−1)/βδ
�′(0) + X

hα/βδ
�′′(0)

]
. (D6)

When (D5) and (D6) are input into the LP equations (48) and
(49), the Larkin-Pikin equations in a finite field become

f̃ = h1+1/δ�

(
X

h1/β/δ

)
+ λ

[
h

1−α
βδ �′

(
X

h1/βδ

)]2

,

t = X − 2λ

[
1

h(α−1)/βδ
�′(0) + X

hα/βδ
�′′(0)

]
, (D7)

which are exactly the equations (138) in the main text.
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