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Experimentally there exist many materials with first-order phase transitions at finite temperature
that display quantum criticality. Classically, a strain-energy density coupling is known to drive first-
order transitions in compressible systems, and here we generalize this Larkin-Pikin[1] mechanism to
the quantum case. We show that if the T = 0 system lies above its upper critical dimension, the line
of first-order transitions can end in a quantum annealed critical point where zero-point fluctuations
restore the underlying criticality of the order parameter.

The interplay of first-order phase transitions with
quantum fluctuations is an active area [2–9] in the study
of exotic quantum states near zero-temperature phase
transitions [10–16]. In many metallic quantum ferro-
magnets, coupling of the magnetization to low energy
particle-hole excitations transforms a high temperature
continuous phase transition into a low temperature dis-
continuous one, and the resulting classical tricritical
points have been observed in many systems [2–9]. Exper-
imentally there also exist insulating materials that have
classical first-order transitions that display quantum crit-
icality [17–21], and here we provide a theoretical basis for
this observed behavior.

At a first-order transition the quartic mode-mode cou-
pling of the effective action becomes negative. One mech-
anism for this phenomenon, studied by Larkin and Pikin
[1] (LP), involves the interaction of strain with a fluctu-
ating critical order parameter. LP found that a diverging
specific heat in the clamped system of fixed dimensions
leads to a first-order transition in the unclamped system
at constant pressure. Specifically, the Larkin-Pikin crite-
rion [1, 22] for a first order phase transition is

κ <
∆CV
Tc

(
dTc
d lnV

)2

(1)

where V is the volume, ∆CV is the singular part of
the specific heat capacity in the clamped system, Tc is
the transition temperature and dTc

dlnV is its strain deriva-
tive. The effective bulk modulus κ is defined as κ−1 =
K−1 − (K + 4

3µ)−1 where K and µ are the bare bulk
and the shear moduli in the absence of coupling to the

order parameter fields; more physically κ ∼ K
c2L
c2T

where

cL and cT are the longitudinal and the transverse sound
velocities [23]. We note that shear strain plays a crucial
role in this approach that requires µ > 0. Short-range
fluctuations in the atomic displacements renormalize the
quartic coupling of the critical modes, but it is the cou-
pling of the uniform (q = 0) strain to the energy density,
the modulus squared of the critical order parameter, that
results in a macroscopic instability of the critical point

leading to a discontinuous transition.

FIG. 1. Proposed Temperature (T)-Field (E)-Pressure (g)
Phase Diagram with a sheet of first-order transitions bounded
by second-order phase lines linking the three critical points,
two classical and one quantum; here g (e.g. Pressure) tunes
the quantum fluctuations and E (e.g. Electric Field) is the
field conjugate to the order parameter (e.g. Polarization).
Inset: Temperature-Pressure “slice” indicating a line of clas-
sical phase transitions ending in a “quantum annealed critical
point” with the standard temperature fan where the underly-
ing order parameter criticality is restored by zero-point fluc-
tuations.

Here we rewrite the Larkin-Pikin criterion in terms
of correlation functions so that it can be generalized
to the quantum case. We show that if the T = 0
quantum system lies above its upper critical dimension,
the corrections to the renormalized bulk modulus are
non-universal; the line of classical first-order transitions
can end in a “quantum annealed critical point” where
zero-point fluctuations restore the underlying criticality
of the order parameter. We end with a discussion of
the temperature-field-pressure phase diagram and spe-
cific measurements to probe it (cf. Fig. 1).

Low-temperature measurements on ferroelectric insu-
lators provide a key motivation for our study [17–21].
At finite temperatures and ambient pressure these ma-
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terials often display first-order transitions due to strong
electromechanical coupling [24]; yet in many cases [17–
21] their dielectric susceptibilities suggest the presence
of pressure-induced quantum criticality associated with
zero-temperature continuous transitions [17–21]. It is
thus natural to explore whether a quantum generalization
of the Larkin-Pikin approach [1], involving the coupling
of critical order parameter fluctuations to long wave-
length elastic degrees of freedom, can be developed to
describe this phenomenon.

In the simplest case of a scalar order parameter ψ and
isotropic elasticity, the Larkin-Pikin (LP) mechanism [25]
refers to a system where the order parameter ψ(~x) is
coupled to the volumetric strain with interaction energy

HI = λ

∫
d3x ell(~x) ψ2(~x) (2)

where eab(~x) = 1
2

(
∂ua

∂xb
+ ∂ub

∂xa

)
is the strain tensor, ua(~x)

is the atomic displacement, ell(x) = Tr[e(~x)] is the vol-
umetric strain and λ is a coupling constant associated
with the strain-dependence of Tc, λ =

(
dTc

dlnV

)
. Though

the elastic degrees of freedom are assumed to be Gaus-
sian, and thus can be formally integrated out exactly,
this must be done with some care. This is because the
strain field separates into a uniform (~q = 0) term defined
by boundary conditions and a finite-momentum (~q 6= 0)
contribution determined by fluctuating atomic displace-
ments

eab(~x) = eab +
1

V

∑
~q 6=0

i

2
[qaub(~q) + qbua(~q)]ei~q·~x, (3)

where {a, b} ∈ [1, 3] and ua(q) is the Fourier transform
of ua(x). Here we employ periodic boundary conditions
to a finite size system with volume V = L3 and discrete
momenta ~q = 2π

L (l,m, n), where l,m, n are integers.
The uniform strain vanishes when the crystal is exter-

nally clamped. The main effect of integrating out the
finite wavevector fluctuations in the strain is to induce
a finite correction to the short-range interactions of the
critical fluctuations that can be absorbed into the quar-
tic ψ4 terms in the action. By contrast, fluctuations in
the uniform component of the strain induce an infinite-
range attractive interaction between the critical modes
(see Supplementary Materials), and it is this component
of the interactions that is responsible for driving first or-
der behavior. The problem is then reduced to the inter-
action of critical order parameter modes, mediated by the
fluctuations of a uniform strain field φ with bulk modulus
κ (for details see Supplementary Materials). Conceptu-
ally, the Larkin-Pikin approach amounts to a study of
critical phenomena in a clamped system, followed by a
stability analysis of the critical point once the clamping
is removed.

Recently it was proposed to adapt the Larkin-Pikin ap-
proach to pressure(P)-tuned quantum magnets where it

is often found that dTc

dP → ∞ as Tc → 0; the authors
argued that the associated quantum phase transitions
should then be first-order [26–28]. However such a di-
verging coupling of the critical order parameter fluctua-
tions and the lattice should lead to structural instabilities
near the quantum phase transition that have not been ob-
served [9, 29]. Furthermore dynamics must be included
when treating thermodynamic quantities at zero temper-
ature [30, 31].

We recast the Larkin-Pikin criterion in the language
of correlation functions, generalizing the LP approach
to the quantum case summing over all possible space-
time configurations. The strain field again separates into
two contributions as in equation (3), one associated with
static uniform boundary conditions and the other deter-
mined by short wavelength displacements fluctuating at
all frequencies

eab(~x, τ) = eab+
1

βV

∑
iνn

∑
~q 6=0

i

2
[qaub(q)+qbua(q)]ei(~q·~x−νnτ)

(4)
where qα ≡ (~q, iνn) with α ∈ [1, 4], ub(q) ≡ ub(~q, iνn)
and νn = 2πnT is a Matsubara frequency (kB = 1). A
detailed analysis indicates that when these space-time
elastic degrees of freedom are integrated out, they lead
to the coupling of the quantum critical order parame-
ter modes to a classical strain field φ, uniform in both
space and time, with the same effective bulk modulus
κ as in the finite-temperature case (see Supplementary
Material). The resulting effective action takes the form

Seff [ψ, φ] =

∫ β

0

dτ

∫
d3x

[
L[ψ] + λφ ψ2(~x, τ) +

1

2
κφ2

]
,

(5)

where (~x, τ) are the Euclidean space-time co-ordinates
and L[ψ] is the Lagrangian of the order parameter ψ(~x, τ)
that undergoes a continuous transition in the clamped
system; in the simplest case L[ψ] is a ψ4 field theory

L[ψ] =
1

2
(∂µψ)2 +

a

2
ψ2 +

b

4!
ψ4. (6)

The partition function of the unclamped system is then

Z[φ] = e−βF [φ] =

∫
D[ψ]e−Seff [ψ,φ], (7)

where the trace is over the internal variable ψ, and Z[φ]
to be evaluated at the stationary point F ′[φ] = 0. The
renormalized bulk modulus, κ̃ = κ−∆κ, is

κ̃ =
1

V

∂2F

∂φ2
= κ− λ2

∫
d3xdτ〈δψ2(~x, τ)δψ2(0)〉, (8)

where δψ2(~x, τ) = ψ2(~x, τ)− 〈ψ2〉. In the classical prob-

lem there is no time-dependence, and
∫ β
0
dτ → β ≡ 1/T
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FIG. 2. Diagrammatic approach to the generalized Larkin-
Pikin criterion a) Bare interaction is a sum of a local and a
nonlocal contribution mediated by fluctuations in the strain;
b) Feynman diagram showing renormalization of the strain
propagator by coupling to energy fluctuations.

so at the transition

κ̃ =
1

V

∂2F

∂φ2
= κ− λ2

Tc

∫
d3x〈δψ2(~x)δψ2(0)〉 = κ−∆κ.

(9)
∆κ in (9) is proportional to energy fluctuations, and can

be re-expressed as λ2

Tc
∆CV ; we thus recover the LP cri-

terion (1) (κ < ∆κ or κ̃ < 0) for a first-order transition.

The renormalized bulk modulus κ̃ can also be obtained
diagrammatically (cf. Figure 2). In the low-energy ef-
fective action, the quartic term now has a contribution
from the coupling of the order parameter fluctuations to
the effective uniform strain. We then can use a Dyson
equation for the strain propagator to determine κ̃. More
specifically we can write(

1

κ̃

)
=

(
1

κ

)
+

(
1

κ

)
λ2〈ψ2(q)ψ2(−q)〉

∣∣
q=0

(
1

κ̃

)
(10)

that results in

κ̃ = κ−∆κ = κ− λ2χψ2 (11)

where χψ2 = χψ2(~q, iνn)
∣∣
~q,iνn=0

is the static susceptibil-

ity for ψ2, where

χψ2(~q, iνn) =

∫ β

0

dτ

∫
ddx〈δψ2(~x, τ)δψ2(0)〉eiνnτ−i~q·~x,

(12)
is the Fourier transform of the fluctuations in ψ2 and
d = 3. The sign of κ̃ in (11) is determined by the infrared
behavior of ∆κ; if it diverges, as it does classically (for a
scalar order parameter and isotropic elasticity), then this
correction is universal and the transition is first order.

Another possibility is revealed in the zero-temperature
long-wavelength Gaussian approximation of (11). If we
make the Gaussian approximation 〈δψ2(x)δψ2(0)〉 ≈

(〈δψ(x)δψ(0)〉)2, then

lim
T→0

∆κ ∝
∫
dq dν qd−1 [χψ(~q, iν)]2 (13)

where χψ(~q, iν), the order parameter susceptibility, is the
Fourier transform of the correlator 〈ψ(x)ψ(0)〉. Since

dimensionally [χ] =
[

1
q2

]
and [ν] = [qz], we find that

in the approach to the quantum phase transition

lim
T→0

[∆κ] =
[qd+z]

[q4]
(14)

so that the quantum corrections to κ are non-singular for
d + z > 4. The presence of quantum zero-point fluctua-
tions increases the effective dimensionality of the phase
space for order parameter fluctuations. If the effective di-
mensionality of the quantum system lies above its upper
critical dimensionality, this will have the effect of liber-
ating the quantum critical point from the inevitable in-
frared slavery experienced by its finite-temperature clas-
sical counterpart. In particular the correction to the
renormalized bulk modulus is then non-universal, allow-
ing for quantum annealed criticality where zero-point
fluctuations toughen the system against the macroscopic
instability present classically, restoring its underlying
continuous phase transition.

We have therefore identified a theoretical scenario
where there is a quantum continuous transition even
though all transitions at finite temperature are first-
order. Application of a field conjugate and paral-
lel/antiparallel to the order parameter in such a system
leads to a line of first-order transitions ending in two
classical critical points. Therefore by continuity there is
a surface of first-order phase transitions in the phase di-
agram (cf. Figure 1) connecting the three critical points,
one quantum and two classical, bounded by second-order
phase lines. This phase diagram then presents an alter-
native scenario of the interplay of discontinuous transi-
tions and fluctuations to that studied in metallic magnets
where applied field is needed to observe quantum criti-
cality in addition to the tuning parameter [9].

The specific heat exponent α plays a key role in the uni-
versality of the classical Larkin-Pikin criterion (1) since
the coupling of the order parameter to the lattice is a
strain-energy density. For the scalar (n = 1) case consid-
ered here, α > 0, so that ∆κ is singular and the finite-
temperature transition is always first-order; for d+z > 4,
there is a quantum annealed criticality but no quantum
tricritical point since the quartic mode-mode term in the
effective action jumps from negative to positive due to
the change of effective dimension.

Because of its underlying non-universal nature, the
possibility of pressure-tuned quantum annealed critical-
ity must be determined in specific setttings. Many fer-
roelectrics have scalar order parameters with dynamical
exponent z = 1, so such three-dimensional materials are
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in their marginal dimension; logarithmic corrections to
the bulk modulus are certainly present but they are not
expected to be singular. Indeed such contributions to the
dielectric susceptibility, χ, in the approach to ferroelec-
tric quantum critical points have not been observed to
date [20]; furthermore here the temperature-dependence
of χ is described well by a self-consistent Gaussian ap-
proach appropriate above its upper critical dimension
[20, 21]. Therefore there may be a very weak first-order
quantum phase transition [32] but experimentally it ap-
pears to be indistinguishable from a continuous one. We
note that near quantum criticality the main effect of long-
range dipolar interactions, not included in this treatment,
is to produce a gap in the logitudinal fluctuations, but
the transverse fluctuations remain critical [33–35]; the
excellent agreement between theory and experiment at
ferroelectric quantum criticality confirms that this is the
case [20, 21].

Dielectric loss and hysteresis measurements can be
used to probe the line of classical first-order transitions,
and to determine the nature of the quantum phase tran-
sition. The Gruneisen ratio (Γ), the ratio of the ther-
mal expansion and the specific heat, is known to change
signs across the quantum phase transition [36, 37]; fur-
thermore it is predicted to diverge at a 3D ferroelectric
quantum critical point as Γ ∝ 1

T 2 so this would be a good
indicator of underlying quantum criticality [21]. Both
the bulk modulus and the longitudinal sound velocity
should display jumps near quantum annealed criticality,
though specifics are material-dependent since the fluctu-
tation contributions to both are non-universal.

For systems with multi-component order parameters
(n ≥ 2), the specific heat exponent α is negative so
the correction to the renormalized bulk modulus will be
nonuniversal even at finite temperatures [22, 38, 39]. In
this case, there can be a classical tricritical point at fi-
nite pressures with a second-order transition that con-
tinues to zero temperature; this situation should be ro-
bust to everpresent disorder following the Harris criterion
[40]. By contrast everpresent elastic anisotropy is known
to destabilize criticality in the classical isotropic elastic
scalar (n = 1) lattice and to drive it first-order into an
inhomogeneous state [22, 38, 39]; here quantum annealed
criticality may still be possible due to the increase of ef-
fective dimensionality. The coupling of domain dynamics
to anistropic strain has been studied classically for ferro-
electrics [41], and implications for the quantum case are
a topic for future work.

In summary, we have developed a theoretical frame-
work to describe compressible insulating systems that
have classical first-order transitions and display pressure-
induced quantum criticality. We have generalized the
Larkin-Pikin criterion [1] in the language of correlation
and response functions; from this standpoint it is clear
that the correction to the renormalized bulk modulus,
singular at finite temperature, is non-universal at T = 0

for d + z > 4 so then the quantum transition may be
continuous. Our analyis has been performed for the case
of a scalar order parameter and isotropic elasticity where
the phase transition is first-order for all finite temper-
ature; in this extreme instance we argue that it is still
possible to have quantum annealed criticality. Naturally
the presence of a finite-pressure classical tricritical point
ensures a continuous quantum phase transition. The key
point is that a compressible material can host a quantum
critical phase even if it displays a first-order transition at
ambient pressure. More generally the order of the clas-
sical phase transition can be different from its quantum
counterpart.

We note in ending that there are experiments on metal-
lic systems [42–44] that also suggest quantum annealed
criticality, so a quantum generalization of the electronic
case [45] with possible links to previous work on metallic
magnets should be pursued [9]; implications for doped
paraelectric materials and polar metals [21] will also be
explored. Extension of this work to quantum transitions
between two distinct ordered states separated by first-
order classical transitions may be relevant to the iron-
based superconductors [46] and to the enigmatic heavy
fermion material URu2Si2 where quantum critical end-
points have been suggested [47]. Finally the possibility
of quantum annealed criticality in compressible materi-
als, magnetic and ferroelectric, provides new settings for
the exploration of exotic quantum phases where a broad
temperature range can be probed with easily accessible
pressures due to the lattice-sensitivity of these systems.
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Parameter and Magnetocaloric Effect near Quantum
Critical Points,” Physical Review B 72, 205129 (2005).

[38] J. Bruno and J. Sak, “Renormalization Group for First-
Order Phase Transitions: Equation of State of the Com-
pressible Ising Magnet,” Phys. Rev. B 22, 3302 (1980).

[39] M.A. de Moura, T.C. Lubensky, Y. Imry, and
A. Aharony, “Coupling to Anisotropic Elastic Media:
Magnetic and Liquid-Crystal Phase Transitions,” Phys.
Rev. B 13, 2176–2185 (1976).

[40] A.B. Harris, “Effects of Random Defects on the Critical
Behaviour of Ising Models,” J. Phys. C 7, 1671 (1974).

[41] R. T. Brierley and P. B. Littlewood, “Domain wall fluc-

http://www.jetp.ac.ru/cgi-bin/dn/e_029_05_0891.pdf
http://dx.doi.org/10.1103/PhysRevLett.82.4707
http://dx.doi.org/10.1103/PhysRevLett.82.4707
http://science.sciencemag.org/content/294/5541/329
http://dx.doi.org/10.1103/PhysRevLett.92.147003
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1103/PhysRevB.74.220402
http://dx.doi.org/10.1103/PhysRevB.74.195126
http://dx.doi.org/10.1103/PhysRevB.74.195126
http://dx.doi.org/10.1103/PhysRevB.85.134451
http://dx.doi.org/10.1103/RevModPhys.88.025006
http://dx.doi.org/10.1103/RevModPhys.88.025006
https://link.aps.org/doi/10.1103/PhysRevLett.64.88
https://link.aps.org/doi/10.1103/PhysRevLett.64.88
https://www.nature.com/articles/nature08917
https://www.nature.com/articles/nature08917
http://dx.doi.org/10.1103/RevModPhys.88.041002
http://dx.doi.org/10.1103/RevModPhys.88.041002
http://dx.doi.org/ 10.1103/PhysRevLett.118.227601
http://dx.doi.org/ 10.1103/PhysRevLett.118.227601
https://arxiv.org/abs/1804.00818
http://dx.doi.org/10.1103/PhysRevLett.78.2397
http://dx.doi.org/10.1103/PhysRevLett.78.2397
https://www.sciencedirect.com/science/article/pii/0038109883904763
https://www.sciencedirect.com/science/article/pii/0038109883904763
https://www.nature.com/articles/ncomms8469
https://www.nature.com/articles/ncomms8469
https://www.nature.com/articles/nphys2924
https://www.nature.com/articles/nphys2924
http://iopscience.iop.org/article/10.1088/1361-6633/aa82d2
http://iopscience.iop.org/article/10.1088/1361-6633/aa82d2
https://link.aps.org/doi/10.1103/PhysRevB.13.2145
https://link.aps.org/doi/10.1103/PhysRevB.13.2145
http://www.jetp.ac.ru/cgi-bin/dn/e_029_06_1123.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_029_06_1123.pdf
http://iopscience.iop.org/article/10.1209/0295-5075/82/60004/meta
https://aip.scitation.org/doi/10.1063/1.3366612
https://aip.scitation.org/doi/10.1063/1.3366612
https://aip.scitation.org/doi/10.1063/1.3366612
https://aip.scitation.org/doi/10.1063/1.3366612
https://link.aps.org/doi/10.1103/PhysRev.126.104
https://link.aps.org/doi/10.1103/PhysRev.126.104
https://www.worldscientific.com/doi/pdf/10.1142/S0217979213500288
http://jetp.ac.ru/cgi-bin/dn/e_033_02_0423.pdf
http://jetp.ac.ru/cgi-bin/dn/e_033_02_0423.pdf
http://jetp.ac.ru/cgi-bin/dn/e_037_01_0164.pdf
https://link.aps.org/doi/10.1103/PhysRevB.67.014105
https://link.aps.org/doi/10.1103/PhysRevB.67.014105
https://link.aps.org/doi/10.1103/PhysRevLett.91.066404
https://link.aps.org/doi/10.1103/PhysRevLett.91.066404
https://link.aps.org/doi/10.1103/PhysRevB.72.205129
https://link.aps.org/doi/10.1103/PhysRevB.22.3302
https://link.aps.org/doi/10.1103/PhysRevB.13.2176
https://link.aps.org/doi/10.1103/PhysRevB.13.2176
http://iopscience.iop.org/article/10.1088/0022-3719/7/9/009/meta


6

tuations in ferroelectrics coupled to strain,” Phys. Rev.
B 89, 184104 (2014).

[42] G.M. Schmiedeshoff, E.D. Mun, A.W. Lounsbury, S.J.
Tracy, E.C. Palm, S.T. Hannahs, J.-H. Park, T.P. Mur-
phy, S.L. Bud/ko, and P.C. Canfield, “Multiple Regions
of Quantum Criticality in Y bAgGe,” Phys. Rev. B 83,
180408 (2011).

[43] Y. Tokiwa, M. Garst, P. Gegenwart, S.L. Bud/ko, and
P.C. Canfield, “Quantum Bicriticality in the Heavy
Fermion Metamagnet Y bAgGe,” Phys. Rev. Lett. 111,
116401 (2013).

[44] A. Steppke, R. Kuchler, S. Lausberg, Edit Lengyel, Lucia

Steinke, R. Borth, T. Luhmann, C. Krellner, M. Nick-
las, C. Geibel, F. Steglich, and M. Brando, “Ferro-
magnetic Quantum Critical Point in the Heavy-Fermion
Metal Y bNi4(P1−xAsx)2,” Science 339, 933 (2013).

[45] S. A. Pikin, “The Nature of Magnetic Transitions in Met-
als,” Sov. Phys. JETP 31, 753 (1970).

[46] K. Quader and M. Widom, “Lifshitz and other tran-
sitions in alkaline-earth 122 pnictides under pressure,”
Phys. Rev. B 90, 144512 (2014).

[47] P. Chandra, P. Coleman, and R Flint, “Hastatic Order
in URu2Si2,” Nature 493, 621 (2013).

http://dx.doi.org/ 10.1103/PhysRevB.89.184104
http://dx.doi.org/ 10.1103/PhysRevB.89.184104
https://link.aps.org/doi/10.1103/PhysRevB.83.180408
https://link.aps.org/doi/10.1103/PhysRevB.83.180408
https://link.aps.org/doi/10.1103/PhysRevLett.111.116401
https://link.aps.org/doi/10.1103/PhysRevLett.111.116401
http://science.sciencemag.org/content/339/6122/933
https://link.aps.org/doi/10.1103/PhysRevB.90.144512
https://www.nature.com/articles/nature11820

	Quantum Annealed Criticality
	Abstract
	References


