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Superconductivity in low carrier density metals challenges the conventional electron-phonon the-
ory due to the absence of retardation required to overcome Coulomb repulsion. In quantum critical
polar metals, the Coulomb repulsion is heavily screened, while the critical transverse optic phonons
decouple from the electron charge. In the resulting vacuum, the residual interactions between
quasiparticles are carried by energy fluctuations of the polar medium, resembling the gravitational
interactions of a dark matter universe. Here we demonstrate that pairing inevitably emerges from
”gravitational” interactions with the energy fluctuations, leading to a dome-like dependence of the
superconducting Tc on carrier density. Our estimates show that this mechanism may explain the
critical temperatures observed in doped SrTiO3. We provide predictions for the enhancement of
superconductivity near polar quantum criticality in two and three dimensional materials that can
be used to test our theory.

Superconductivity exemplifies the dramatic effects of
interactions in many-body quantum systems [1]. Con-
ventional superconductors electrons exploit the electron-
phonon attraction to overcome the Coulomb repulsion
[2, 3] by producing a highly retarded attraction that pairs
electrons, a process that requires a large ratio between
the Fermi and Debye energies EF /ωD >> 1 [4]. A chal-
lenge to this mechanism is posed by superconductivity
in low carrier polar metals. These lightly doped insula-
tors, exemplified by doped SrTiO3 (STO) [5] lie close to
a ferroelectric quantum critical point (QCP) and exhibit
bulk superconductivity down to carrier densities of order
1019cm−3, where the relevant phonon frequency exceeds
the Fermi energy [5] by orders of magnitude. Yet despite
this inversion of energy scales, experiments [6, 7] indicate
a conventional s-wave condensate, with a ratio of gap to
transition temperature 2∆/Tc ≈ 3.5 in agreement with
BCS theory [7].

Several theories have been advanced to explain super-
conductivity in polar metals using conventional electron-
phonon interaction [8] and its extension to include plas-
mon effects [9–14]. Alternative phonon coupling mecha-
nisms requiring spin-orbit coupling or multiband effects
[15–18] have also been examined. Recently, it has been
proposed that the underlying ferroelectric quantum crit-
icality of the polar metal is a key driver in the pairing
[19–22]. However, this appealing idea encounters a diffi-
culty, for the critical modes of a polar QCP are transverse
optic (TO) phonons, which are neutral and decouple from
the electrons[23–25].

These considerations motivate us to reconsider super-
conductivity in quantum critical polar metals, guided by
two key observations: first, the strong ionic screening as-
sociated with the enhanced dielectric constant severely
weakens the electronic Coulomb interaction (Fig 1 (a));
second, since the critical transverse optic phonon modes
decouple from the electron charge, the resulting quan-

FIG. 1. Interactions between electrons in a quantum critical
polar metal: (a) the electric lines of force around an electron
are ionically screened, (b) the fluctuations of the phonon en-
ergy density around electrons (see (1)) create an attractive
potential well.

tum fluid can be likened to dark matter, for like baryons
in the cosmos, electron charge does not directly interact
with the the intense background of zero-point fluctua-
tions. Moreover, like dark matter, the quantum crit-
ical TO modes are only revealed to the electrons via
their “gravitational interaction”, mediated by the stress-
energy tensor. The resulting interaction becomes increas-
ingly intense at a quantum critical point; we model it by
the Hamiltonian [26, 27]:

HEn = g

∫
d3xρe(x)~P (x)2 (1)

where ρe(x) = ψ†(x)ψ(x) is the electron density, (~P (x))2

is proportional to the energy density of the local polar-
ization ~P and g is a coupling constant with the dimen-
sions of volume. This coupling locally suppresses the
zero-point fluctuations of the polarization in the vicinity
of electrons, that in turn lowers the chemical potential
of electrons passing in the region (Fig. 1 (b)), creat-
ing an attractive potential well. To lowest order, the
resulting attractive potential is described by the virtual
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exchange of pairs of TO phonons [28], allowing us to link
these ideas to two recent observations: first, that two-
phonon exchange appears to drive the anomalous “high-
temperature” T 2 resistivity of polar metals[27, 29], and
second that two-phonon processes may drive supercon-
ductivity [30] reviving an old idea [26].

Here we study the consequences of the coupling to en-
ergy fluctuations of the order parameter (1) in quantum
critical polar metals. We find that quantum criticality
causes the zero-point fluctuations to intensify, increas-
ing the attractive interaction between electrons. More-
over, while the Fermi liquid behavior is robust against
these couplings, the attractive interactions mediated by
the energy fluctuations overcome the Coulomb repulsion
in the low density regime. Using model parameters for
SrTiO3 we find agreement with experiments both in the
magnitude of Tc and in its doping dependence; finally
we predict the fingerprints of this novel mechanism to
be more pronounced in two-dimensional quantum criti-
cal polar systems.

Our theory is built on an isotropic model for the po-
lar metal, with an action S = Se + SC + SEn, where
SEn =

∫
dτHEn is the energy fluctuation term (1),

Se =
∑
k ψ
†
k(εk − iωn)ψk, is the electronic action, in

terms of the Fourier transformed electron field ψk, where
k ≡ (iωn,k) is a four-vector containing the Matsubara

frequency and wavevector ~k and

SC =
∑
q

[
|eρq − (∇ · ~P )q|2

2ε0ε1~q2
+
ν2
n + ω2

T (~q)

2ε0Ω2
0

|~P (q)|2
]
,

(2)
is the Coulomb interaction between the total charge den-
sities eρe − ∇ · ~P , where q ≡ (iνn, ~q). ε1 is the bare
dielectric constant, Ω0 is the ionic plasma frequency and
ωT (~q) is the energy dispersion of the transverse optical
mode. At low momenta ω2

T (~q) ≈ ω2
T + c2s~q

2, where cs
is the speed of the transverse optic mode and ω2

T van-
ishes at the QCP. The Gaussian coefficients of the polar-
ization, δ2SC/δPa(−q)δPb(q) = D−1

ab (q) in (2), separate
into transverse and longitudinal components

D−1
αβ (q) = D−1

L (q)q̂αq̂β +D−1
T (q)(1− q̂αq̂β) (3)

where D−1
L,T (q) = (ν2

n+ω2
T,L(~q))/ε0Ω2

0 are the inverse lon-
gitudinal and transverse phonon propagators. The lon-
gitudinal optic mode frequency ω2

L(~q) = ω2
T + Ω2

0/ε1 is
shifted upwards by the Coulomb interaction.

We first consider the case where g = 0. Integrating
over the longitudinal modes, the Coulomb interaction be-
comes

S̃C =
∑
q

[
|ρq|2

e2

2ε0ε(q)~q2
+
|~PT (q)|2

2DT (q)

]
. (4)

Here, for |~q| � qD

ε(q, iνn) = ε1 +
Ω2

0

ν2
n + c2s~q

2 + ω2
T

(5)

is the renormalized dielectric constant, PTa (q) = (δab −
q̂aq̂b)Pb(q) are the transverse components of the polariza-
tion. Most importantly, in action (4) the quantum crit-
ical transverse polar modes are entirely decoupled from
the electronic degrees of freedom, exemplifying the dark
matter analogy.

Normally, low carrier density metals are considered
strongly interacting, for the ratio of Coulomb to kinetic

energy, determined by rs = 1/(kFaB), where kF ∼ n
1/3
e

is the Fermi momentum and aB = 4πε~2

m∗e2 the Bohr radius,
is very large at low densities. However, in a quantum crit-
ical polar metal, the large upward renormalization of the
dielectric constant, Eq. (5), can severely suppresses the
interaction between the electrons. Indeed, the dielectric
constant at the relevant electronic scales at low densities
is ε ∼ ε(~q, ω)|q=2kF ,ω=εF ≈

Ω2
0

(2cskF )2 � 1 at the polar

QCP, leading to rs � 1. Furthermore, the electronic
corrections to the dielectric constant, given in RPA by

δεRPA = e2

q2ε0
Πe(q, νn), where Πe(q) is the dynamical

susceptibility (Lindhardt function) of the electron gas,
can be neglected. Indeed, δεRPA

ε |q=2kF ,ω=εF ∼ rs � 1.

The regime considered here is in stark contrast to
the conventional case of the relevant frequency being of
the order of ωL � EF . There, the strong frequency-
dependence of ε leads to a Bardeen-Pines attraction near
the Fermi surface. Additionally, at low momentum trans-
fers vF q � ω, a new scale appears in the problem - the
electronic plasma frequency; its contribution to pairing
is however suppressed by the factor ε−1 [11]. Thus, in
what follows we neglect this possibility, approximating
the electron dynamical susceptibility by its long wave-
length, low frequency limit as in (5).

We next consider the effect of turning on the coupling
to energy fluctuations in (1). The presence of a finite elec-
tron density ne = 〈ρe(x)〉 leads to a shift in the phonon
frequency:

ω2
L,T (ne) = ω2

L,T + 2gneε0Ω2
0, (6)

which naturally explains the suppression of the polar
state by charge doping, universally observed in polar met-
als [21, 31–33].

The coupling of the energy fluctuations to the electron
density fluctuations δρe(x) = ρe(x)− ne, cannot be inte-
grated out exactly. Interactions with critical fluctuations
near QCPs can be relevant perturbations in scaling sense
[34], destabilizing the Fermi liquid ground state already
at weak coupling [34, 35]. In our case, however, the inter-
action Eq. (1) preserves the Fermi liquid. Assuming the
dynamical critical exponent z = 1 and taking the scaling
dimension of momentum [q] = 1, one obtains [g] = 2− d,
irrelevant in 3D [28], implying that the system remains a
Fermi liquid even at the QCP. Thus, we can consider its
effects perturbatively for weak coupling. Integrating out
the field ~P (x) to lowest order in g, we obtain an effective
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interaction between electrons:

∆S =
1

2

∫
d4xd4x′δρe(x)VEn(x−x′)δρe(x′)+O(g3) (7)

where

VEn(x− x′) = −2g2Tr

[
D(x− x′)2

]
(8)

is recognized to be an attractive density-density interac-
tion resulting from two-phonon exchange, Fig. 1 (b). At
criticality, the contribution to Eq. (8) of the transverse
modes stems from their propagator

Dtr
ab(~x, τ) = ε0

(
Ω0

2πcs

)2
1

~x2 + c2sτ
2

(δab − x̂ax̂b), (9)

leading to a long-range interaction of the form

V (~x, τ) = − λ2

(~x2 + c2sτ
2)2

, (10)

where λ =
gε0Ω2

0

2π2cs
. Away from criticality, (10) is valid

for space-time separations smaller than the correlation
length ξ = cs/ωT . The interaction at finite momentum
and frequency transfer, relevant for pairing, is obtained
by a Fourier transform of this expression

V (iω,q) = −
(
λ

cs

)2 ∫ ξ

a0

ei[(~q·~x)+ωτ ]

x4
d4x

∼ −
(

2π2λ2

cs

)
ln

[
a−1

0

max(ξ−1, ωq/cs)

]
. (11)

where ωq =
√
ω2 + c2s~q

2. The characteristic electronic
momentum and energy transfer scales are q ∼ kF ∼ n1/3

and ω ∼ EF ∼ n2/3, respectively, resulting in |q|−1 ∼
n−1/3, cs/|ωn| ∼ n−2/3. Furthermore, following (6), a
finite electron density leads to a finite correlation length
of the order ξ ∼ n−1/2.

Consequently, the interaction character changes with
density, and can be described by an effective interaction
V PairEn (~x, τ) obtained by inverse Fourier transforming the
final result of Eq. (11) (Fig. 2). For a polar metal criti-
cal at zero doping (ωT (ne = 0) = 0), one expects that at
low densities the interaction is cut off at the momentum
scale of kF , while being essentially independent of the
frequency transferred, since EF /cs � kF . This is identi-
cal to an instantaneous repulsion, nonlocal in real space
(Fig. 2, middle). In the high density limit, the frequency-
dependence of the interaction can be no longer ignored
and is suppressed for frequencies beyond cskF , qualita-
tively similar to a usual phonon-mediated attraction (Fig.
2, rightmost region). Finally, if ωT � EF , cskF (leftmost
region of Fig. 2), which can be realized away from QCP
or at intermediate densities, the interaction V PairEn (~x, τ)
reduces to an instantaneous local attraction.

Log[ne]

Log[E] V En(x,τ)~

ωT

2cskF

EF

~n2/3

~n1/3

~n1/2δ(x)·δ(τ)·
·log[ξ/a0]

δ(τ)
|x|3

δ(x)
τ

Pair

FIG. 2. Density dependence of the effective energy-fluctuation
mediated electron-electron attraction V PairEn (~x, τ) (see text):
colored lines show the relevant energy scales for the interac-
tion; in each region (gray dashed lines) the dominant scale
determines the effective form of the interaction. At low den-
sities the interaction can be approximated with a local one.
On increasing the density, the momentum dependence of the
interaction first becomes prominent, while at the highest den-
sities, strong retardation shows on the scales of order ~/EF .

A more detailed calculation of the interaction potential
yields

V2TO(iω,q) = −
(

2π2λ2

cs

)(
log

[
ΩT
ωT

]
− f

(
ωq
ωT

))
,

f(x) =

√
4 + x2

2x
log

[√
4 + x2 + x√
4 + x2 − x

]
− 1

2
,

(12)
where ΩT = max~q ωT (~q). Here it is important to note,
that since the integral is logarithmically divergent, large
momenta of the order of the Brillouin zone size con-
tribute significantly. At such momenta, the dispersion
is expected to deviate from the simple quadratic one.
Thus in practical calculations, we need an average value
of cs which we approximate in the spirit of Debye ap-
proximation by cs = ΩT /((6π

2)1/3/a0). We remark that
the contribution of the longitudinal modes to the induced
interaction can be shown to be negligible in the critical

regime ΩT � ωT , cskF and assuming
Ω2

0

c2sκ
2
D
� 1 [28].

Additionally, in deriving the above we assumed that the
momentum and energy cutoff scales are sufficiently large
such that the corrections to the phonon propagator Eq.
(9) due to phonon-phonon interactions (logarithmic for a
QCP in 3D [36]), can be neglected.
Superconductivity at low densities: We now show that

the attractive interaction mediated by the energy fluctu-
ations always leads to superconductivity at low densities
close to the polar QCP. More specifically, averaging the
repulsive Coulomb ((4), (5)) and the attractive (12), in-
teractions over the Fermi surface, i.e. 〈V (k − k′)〉 =
〈V (kF , kF , θ)〉θ, we obtain:

λeff = N(0)

((
2π2λ2

cs

)
log

[
ΩT

2cskF

]
− 4πe2c2s

Ω2
0

)
, (13)
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where N(0) = kFm
∗

2π2~2 is the density of states. In deriving

this we used that ωT ∼ (gn)1/2, EF ∼ n2/3 � cskF ∼
n1/3. Most importantly, we find that at low enough dop-
ings the two-phonon attraction inevitably overcomes the
Coulomb repulsion due to the logarithmic enhancement
of the former. In particular, the total interaction is still
attractive for densities below

n < ncr =
1

4a3
0

e−3α, α =
128π5c5e2

Ω6
0g

2
(14)

where α ∼ 40aBa0
EhΩ5

T

Ω6
0

for g ∼ a3
0. For strongly polar ma-

terials, Ω0 � ΩT and hence α � 1, so this restriction is
unimportant. Moreover, from (13) the attractive part of
the interaction behaves as λeff ∼ n1/3 log(ΩT /csn

1/3),
describing a dome-shaped behavior of the attractive cou-
pling constant peaked at kF = ΩT /2ecs corresponding to
a density:

nmax =
1

3π2

(
ΩT
2ecs

)3

≈ 0.01(cs/cs)
3

a3
0

. (15)

As the phonon dispersion flattens near the Brillouin zone
edges, the average cs < cs so that nmax � 1 corresponds
to a dilute charge concentration well below half filling.
Finally, away from the QCP (i.e. ωT (ne = 0) 6= 0), the
Coulomb screening is reduced, resulting in an additional
repulsive term ∼ 2πe2ω2

T /(Ω
2
0k

2
F ) (c.f. (5)). Due to its

singular nature at kF → 0 this sets a lower bound on the
density nmin ∼ ξ−3[α/ log(ΩT /ωT )]3/2/3π2 where the in-
teraction is attractive.

Let us now discuss the critical temperatures of the re-
sulting superconductor. At low densities, the interaction
is essentially instantaneous (see Fig. 2). The critical tem-
perature can then be found in the non-adiabatic weak-
coupling limit to be Tc ≈ 0.28EF e

−1/λeff [37–39]. Due
to the exponential dependence on the coupling constant,
one expects Tc to have a dome-like shape with a max-
imum at nmax as in (15). The theory developed here
also has important consequences for the dependence of
Tc on external tuning parameters (e.g. pressure)in the
vicinity of a polar QCP. Neglecting the residual Coulomb
term in (13) and thus assuming the dominance of the
energy-fluctuation attraction, one obtains for ωT � cskF
that d lnTc

d lnωT
∼ −1/ log2 ΩT

ωT
, leading to a singular depen-

dence of Tc on tuning parameter near the QCP. How-
ever, in the high-density limit 2cskF � ωT , the coupling
constant is almost independent of the TO phonon fre-
quency, so the tuning sensitivity will be much weaker,
d log Tc

d logωT
∼ log

(
cskF
ωT

)
ω2
T /(cskF )2.

2D polar metals: Similar calculations can be performed
in two dimensions. While at tree level, Eq. (1) is
marginal, the corrections due to quartic interactions be-
tween phonons reduce [40] the momentum-space singu-
larities of the energy fluctuations, preserving the Fermi
liquid in 2D. The 2D Fourier transformation of expression

(11) yields

V 2D
2TO(iωn, ~q) ∼

g2
2DΩ4

0

(4π)3c2s

1

max(ωT , ωq)
(16)

- a stronger singularity than in 3D. In the limit cskF �
ωT the terms due to LO phonon energy fluctuation
also have to be included, being of the same order,
but this does not change the qualitative form of the
interaction[28]. Finally, the bare Coulomb repulsion in

2D is given by 2πe2

q . Screening with the polar mode and
conduction electrons, however, reduces it to

V 2D
C (iω,q) =

4π
Ω2

0l0q
2

ω2
n+ω2

T +c2q2 + 4m
∗e2

~2

, (17)

where l0 is the 2D layer thickness.
Superconductivity in SrT iO3: We now apply these re-

sults to doped SrT iO3. Fig. 3 (a) displays the dop-
ing dependence of Tc calculated using the parameters
from literature [28] and taking g/a3

0 = 0.72, a cou-
pling constant in accord with fits to the low tempera-
ture T 2 resistivity[27]. For the energy fluctuation inter-
action, Eq.(12), we assumed 2cskF � EF , which holds
in SrT iO3 for densities lower than 2.6 · 1019cm−3. How-
ever, even at largest densities considered, EF ∼ 3(2cskF );
as the frequency-dependence of the interaction does not
alter the leading logarithmic contribution in the low-
temperature limit of the pairing problem [28], we expect
our approach to be qualitatively correct for all the rel-
evant densities. In this approximation, 2∆/Tc = 3.53
takes the BCS value [37, 38], in accord with STM ex-
periments [7]. Both the magnitude and the doping de-
pendence of the critical temperature are in good agree-
ment with experiment. The dome-like shape of Tc(n)
arises from the nonomonotonic dependence of the two-
phonon attractive coupling constant on density, initially
rising with the density of states, subsequently decreasing
as the momentum cutoff cskF approaches ΩT (with the
maximal value expected from (12) reached at nmax, Eq.
(15)). This is further corroboration of the competition
with Coulomb repulsion, which becomes less screened as
q ∼ kF grows. We note that experiments which observe a
second Tc dome at lower doping also suggest that super-
conductivity at low doping is highly inhomogeneous and
affected by the nature of the dopants [41], effects that lie
beyond the current model.

As discussed above, proximity to the QCP should en-
hance Tc, particularly at low densities. Such a correlation
has been observed for the cases of oxygen isotope substi-
tution [20] as well as Ca-Sr substitution [21], pressure
[13] or strain [42–44]. In particular, the enhancement is
observed to be more pronounced at low dopings [21], in
qualitative agreement with the arguments given above.
Note also, that in the polar phase away from QCP the
interaction (1) would still lead to pairing, however the
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mode frequency would grow faster than on the disor-
dered side, according to Landau theory. Finally, [13] in
a recent experiment both Tc and ε0 have been measured
as a function of pressure. With the coupling constant
being λ ≈ 0.25 from the known EF , one obtains [28]
dTc

dx ≈ 0.1K/kbar consistent with the experimental value
0.06K/kbar [13].

(a)

(b) n,cm-3

+
+

+

+
+
++

+

+ +
+
+
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+

+

+

+

+
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FIG. 3. (a) Tc as a function of carrier density for parameters
appropriate for SrTiO3, where the best fit is obtained for
g/a30 = 0.72. The experimental Tc is determined from the
onset of the Meissner effect[45, 46]. The green line shows the
Tc(n) expected at the QCP. (b) same as (a) for a 2D system
modeling a film of SrTiO3 with thickness 2a0. m∗ = 2me is
taken due to low densities. The enhancement due to proximity
to the QCP (green line) is much stronger, than in 3D case (a).

Thin films of SrTiO3 will provide a platform to explore
the predictions of the energy fluctuation theory. Fig. 3
(b) displays the predicted Tc, using Tc = 0.15EF e

−1/λ for
2D instantaneous pairing (cskF � ωT ) [37–39]), using
coupling constants appropriate for a two-layer thick slab
of SrTiO3. Assuming that the electons and phonons are
in the lowest lateral quantization state, we obtain g2D =
g/(2a0) [28]. The results show that an appreciable Tc
is obtained at low densities. Furthermore, Tc is highly
sensitive to the approach to criticality: a slight decrease
of the TO phonon frequency essentially doubles Tc.

Conclusion: Here we have presented a new mechanism

for superconductivity in quantum critical polar metals
that relies neither on retardation nor on momentum-
dependence: the electrons interact with quantum criti-
cal energy fluctuations of the order parameter similar to
the gravitational interactions of baryons with the dark
matter. We show that this coupling of the electron den-
sity to critical energy fluctuations results naturally in a
dome-shaped dependence of Tc on the carrier density n;
our estimates show that this Tc(n) is consistent with that
observed in doped superconducting SrTiO3. We predict
that in 2D systems, e.g. epitaxial SrTiO3 films, the ef-
fects of energy fluctuations will be even more marked,
with extreme sensitivity of Tc to the vicinity to the QCP.
From a broader perspective, large energy fluctuations
have been shown to exist near quantum critical points
in the strong-coupling regime [47, 48]; our work presents
a new mechanism for superconductivity in such strongly
correlated systems. The occurence of superconductivity
mediated by energy-density fluctuations can also serve
as a tool to probe the ”dark matter” aspects of the solid
state, involving excitations that do not interact electro-
magnetically, such as those related to hidden orders.
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